6533b852fe1ef96bd12ab873

RESEARCH PRODUCT

Plantarflexor Muscle-Tendon Properties are Associated With Mobility in Healthy Older Adults

Marco V. NariciJean-yves HogrelJamie S. McpheeCarel G. M. MeskersSarianna SipiläYoann BarnouinMati PääsukeAndrea B. MaierAstrid Y. BijlsmaElina SillanpääLauri StenrothHelena GapeyevaTaija FinniGillian Butler-browne

subject

MaleAgingTendon stiffnesstendonmuscleIsometric exerciseWalkingPhysical performanceTendonsTriceps surae muscleMedicineta315Gait BiomechanicsAchilles tendonta3141SkeletalTendonmedicine.anatomical_structureMuscleFemalemedicine.medical_specialtyGastrocnemius muscleSkeletal/physiologycross-sectional studyMuscle architectureHumanshumanMuscle Strengthskeletal muscleMuscle SkeletalAgedbusiness.industrytendon stiffnessaged; aging; cross-sectional study; female; human; male; muscle strength; physiology; skeletal muscle; tendon; walking Aged; Aging; Cross-Sectional Studies; Female; Humans; Male; Muscle Strength; Muscle Skeletal; Tendons; Walking; Gait Biomechanics; Muscle; Muscle architecture; Physical performance; Tendon stiffnessphysical performancegait biomechanicsAging/physiologybody regionsMuscle Skeletal/physiologyCross-Sectional Studiesmuscle architecturephysiologyPhysical therapyLean body massFascicle lengthGeriatrics and GerontologybusinessMuscle architecturehuman activitiesTendons/physiology

description

BACKGROUND: Muscle mass, strength, and power are known determinants of mobility in older adults but there is limited knowledge on the influence of muscle architecture or tendon properties on mobility. The purpose of this study was to examine the relationship between mobility and plantarflexor muscle-tendon properties in healthy older adults.METHODS: A total of 52 subjects (age 70-81 years) were measured for 6-minute walk test (6MWT), timed "up and go"-test (TUG), isometric plantarflexion strength, Achilles tendon stiffness, triceps surae muscle architecture, lower extremity lean mass, isometric leg extension strength, and leg extension power. Partial correlations and multivariate regression models adjusted for sex, age, body mass, and height were used to examine the relationship between mobility (6MWT and TUG) and lower limb muscle-tendon properties.RESULTS: Multivariate regression models revealed that Achilles tendon stiffness (p = .020), plantarflexion strength (p = .022), and medial gastrocnemius fascicle length (p = .046) were independently associated with 6MWT. Plantarflexion strength (p = .037) and soleus fascicle length (p = .031) were independently associated with TUG.CONCLUSIONS: Plantarflexor muscle-tendon properties were associated with mobility in older adults independent of lower extremity lean mass, leg extension strength, or power. Plantarflexion strength was a stronger predictor of mobility than leg extension strength or power. The novel finding of this study was that muscle architecture and tendon properties explained interindividual differences in mobility. This study highlights the importance of the plantarflexors for mobility in older adults and provides understanding of possible mechanisms of age-related decline in mobility.

10.1093/gerona/glv011https://doi.org/10.1093/gerona/glv011