6533b852fe1ef96bd12ab885

RESEARCH PRODUCT

Differentiation of an additive interval measure with values in a conjugate Banach space

B. BongiornoKazimierz MusiałLuisa Di Piazza

subject

Pettis integralMathematics::Functional AnalysisPure mathematics54C60General MathematicsMathematical analysisMathematics::Classical Analysis and ODEsBanach spacevariational measureKurzweil-Henstock integralCharacterization (mathematics)Space (mathematics)Measure (mathematics)Kurzweil--Henstock integral Pettis integral variational measure.28B05Range (mathematics)26A39Settore MAT/05 - Analisi MatematicaPettis integral28B20Interval (graph theory)46G10MathematicsConjugate

description

We present a complete characterization of finitely additive interval measures with values in conjugate Banach spaces which can be represented as Henstock-Kurzweil-Gelfand integrals. If the range space has the weak Radon-Nikodým property (WRNP), then we precisely describe when these integrals are in fact Henstock-Kurzweil-Pettis integrals.

10.7169/facm/2014.50.1.6.http://hdl.handle.net/10447/93967