6533b853fe1ef96bd12ac0d1
RESEARCH PRODUCT
Genetic identification of a network of factors that functionally interact with the nucleosome remodeling ATPase ISWI.
Gaspare La RoccaDario Di GesùJohn W. TamkunAnna SalaAdam S. SperlingWalter ArancioDavide CoronaDavide CoronaSimon J. Van HeeringenColin LogieGiosalba BurgioJennifer A. ArmstrongJennifer A. ArmstrongCollesano Msubject
MaleProteomicsCancer Researchlcsh:QH426-470Histone Deacetylase 1BiologySettore MED/08 - Anatomia PatologicaChromosomesHistone DeacetylasesChromatin remodelingHistonesHistone H403 medical and health sciences0302 clinical medicineGenetics and Genomics/EpigeneticsGeneticsAnimalsDrosophila ProteinsNucleosomeMolecular BiologyGenetics (clinical)Ecology Evolution Behavior and Systematics030304 developmental biologyAdenosine TriphosphatasesGenetics0303 health sciencesNuclear ProteinsAcetylationChromatin Assembly and DisassemblyChromatinNucleosomesChromatiniswi drosophilaRepressor ProteinsChromatin epigeneticsHDAC Chromatin RemodellingSin3 Histone Deacetylase and Corepressor Complexlcsh:GeneticsDrosophila melanogasterHistoneHistone deacetylase complexbiology.proteinFemaleHistone deacetylaseHistone deacetylase activity030217 neurology & neurosurgeryResearch ArticleTranscription Factorsdescription
Nucleosome remodeling and covalent modifications of histones play fundamental roles in chromatin structure and function. However, much remains to be learned about how the action of ATP-dependent chromatin remodeling factors and histone-modifying enzymes is coordinated to modulate chromatin organization and transcription. The evolutionarily conserved ATP-dependent chromatin-remodeling factor ISWI plays essential roles in chromosome organization, DNA replication, and transcription regulation. To gain insight into regulation and mechanism of action of ISWI, we conducted an unbiased genetic screen to identify factors with which it interacts in vivo. We found that ISWI interacts with a network of factors that escaped detection in previous biochemical analyses, including the Sin3A gene. The Sin3A protein and the histone deacetylase Rpd3 are part of a conserved histone deacetylase complex involved in transcriptional repression. ISWI and the Sin3A/Rpd3 complex co-localize at specific chromosome domains. Loss of ISWI activity causes a reduction in the binding of the Sin3A/Rpd3 complex to chromatin. Biochemical analysis showed that the ISWI physically interacts with the histone deacetylase activity of the Sin3A/Rpd3 complex. Consistent with these findings, the acetylation of histone H4 is altered when ISWI activity is perturbed in vivo. These findings suggest that ISWI associates with the Sin3A/Rpd3 complex to support its function in vivo.
year | journal | country | edition | language |
---|---|---|---|---|
2008-06-01 |