6533b853fe1ef96bd12ac11b
RESEARCH PRODUCT
Protein phosphatases and chromatin modifying complexes in the inflammatory cascade in acute pancreatitis
Luis SabaterJavier PeredaJavier EscobarJuan SandovalGerardo López-rodasJuan SastreLuis AparisiAlessandro Arduinisubject
Histone deacetylase 5biologyHistone methyltransferaseHistone H2Abiology.proteinCancer researchHistone acetyltransferaseHistone deacetylaseTopic HighlightSAP30CREBChromatin remodelingdescription
Acute pancreatitis is an inflammation of the pancreas that may lead to systemic inflammatory response syndrome and death due to multiple organ failure. Acinar cells, together with leukocytes, trigger the inflammatory cascade in response to local damage of the pancreas. Amplification of the inflammatory cascade requires up-regulation of pro-inflammatory cytokines and this process is mediated not only by nuclear factor κB but also by chromatin modifying complexes and chromatin remodeling. Among the different families of histone acetyltransferases, the p300/CBP family seems to be particularly associated with the inflammatory process. cAMP activates gene expression via the cAMP-responsive element (CRE) and the transcription factor CRE-binding protein (CREB). CREB can be phosphorylated and activated by different kinases, such as protein kinase A and MAPK, and then it recruits the histone acetyltransferase co-activator CREB-binding protein (CBP) and its homologue p300. The recruitment of CBP/p300 and changes in the level of histone acetylation are required for transcription activation. Transcriptional repression is also a dynamic and essential mechanism of down-regulation of genes for resolution of inflammation, which seems to be mediated mainly by protein phosphatases (PP1, PP2A and MKP1) and histone deacetylases (HDACs). Class II HDACs are key transcriptional regulators whose activities are controlled via phosphorylation-dependent nucleo/cytoplasmic shuttling. PP2A is responsible for dephosphorylation of class II HDACs, triggering nuclear localization and repression of target genes, whereas phosphorylation triggers cytoplasmic localization leading to activation of target genes. The potential benefit from treatment with phosphodiesterase inhibitors and histone deacetylase inhibitors is discussed.
year | journal | country | edition | language |
---|---|---|---|---|
2010-06-06 |