6533b853fe1ef96bd12ac12b
RESEARCH PRODUCT
Turbulent jet through porous obstructions under Coriolis effect: an experimental investigation
Roni Hilel GoldshmidMaurizio RighettiThomas ValranMichele MossaDan LiberzonGiuseppe Roberto PisaturoSamuel ViboudFrancesca De SerioM. Eletta NegrettiJoël SommeriaDonatella Terminisubject
010504 meteorology & atmospheric sciencesComputational MechanicsGeneral Physics and AstronomyRotation01 natural sciencesSettore ICAR/01 - Idraulica010305 fluids & plasmasPhysics::Fluid DynamicsMomentumCorioli0103 physical sciencesMean flow0105 earth and related environmental sciencesFluid Flow and Transfer ProcessesPhysicsJet (fluid)[SDE.IE]Environmental Sciences/Environmental EngineeringTurbulence[SPI.FLUID]Engineering Sciences [physics]/Reactive fluid environmentexperimentsMechanicsParticle image velocimetry13. Climate actionMechanics of MaterialsDragturbulent jetTurbulence kinetic energydescription
AbstractThe present study has the main purpose to experimentally investigate a turbulent momentum jet issued in a basin affected by rotation and in presence of porous obstructions. The experiments were carried out at the Coriolis Platform at LEGI Grenoble (FR). A large and unique set of velocity data was obtained by means of a Particle Image Velocimetry measurement technique while varying the rotation rate of the tank and the density of the canopy. The main differences in jet behavior in various flow configurations were assessed in terms of mean flow, turbulent kinetic energy and jet spreading. The jet trajectory was also detected. The results prove that obstructions with increasing density and increased rotation rates induce a more rapid abatement of both jet velocity and turbulent kinetic energy. The jet trajectories can be scaled by a characteristic length, which is found to be a function of the jet initial momentum, the rotation rate, and the drag exerted by the obstacles. An empirical expression for the latter is also proposed and validated. Graphic abstract
year | journal | country | edition | language |
---|---|---|---|---|
2021-08-31 | Experiments in Fluids |