6533b853fe1ef96bd12ac9ae

RESEARCH PRODUCT

Number of metastable states of a chain with competing and anharmonicΦ4−like interactions

Jürgen VollmerRolf SchillingWolfgang Breymann

subject

PhysicsCoupling constantCondensed matter physicsExponential growthMetastabilityAnharmonicityPiecewiseConfiguration spaceMolecular physics

description

We investigate the number of metastable configurations of a Φ 4 -like model with competing and anharmonic interactions as a function of an effective coupling constant η. The model has piecewise harmonic nearest-neighbor and harmonic next-nearerst-neighbor interactions. The number M of metastable states in the configuration space increases exponentially with the number N of particles: M∞exp(vN). It is shown numerically that, outside the previously considered range |η|<1/3, v is approximately linearly decreasing with η for |η|<1 and that v=0 for η≥1. These findings can be understood by describing the metastable configurations as an arrangement of kink solitons whose width creases with η

https://doi.org/10.1103/physrevb.47.11767