6533b853fe1ef96bd12acc71

RESEARCH PRODUCT

A photoswitchable helical peptide with light-controllable interface/transmembrane topology in lipidic membranes

Mónica Gutiérrez-salazarEduardo Santamaría-arandaLouise SchaarJesús SalgadoDiego SampedroVictor A. Lorenz-fonfria0000-0003-2772-6453

subject

BiomoleculesMembranesMultidisciplinaryPhotoisomerizationPhotoswitchPhotoabsorptionScienceQArticleFolding (chemistry)chemistry.chemical_compoundCrystallographyMembraneAzobenzenechemistryMembrane topologyHelixLipid bilayer

description

Summary The spontaneous insertion of helical transmembrane (TM) polypeptides into lipid bilayers is driven by three sequential equilibria: solution-to-membrane interface (MI) partition, unstructured-to-helical folding, and MI-to-TM helix insertion. A bottleneck for understanding these three steps is the lack of experimental approaches to perturb membrane-bound hydrophobic polypeptides out of equilibrium rapidly and reversibly. Here, we report on a 24-residues-long hydrophobic α-helical polypeptide, covalently coupled to an azobenzene photoswitch (KCALP-azo), which displays a light-controllable TM/MI equilibrium in hydrated lipid bilayers. FTIR spectroscopy reveals that trans KCALP-azo folds as a TM α-helix (TM topology). After trans-to-cis photoisomerization of the azobenzene moiety with UV light (reversed with blue light), the helical structure of KCALP-azo is maintained, but its helix tilt increased from 32 ± 5° to 79 ± 8°, indication of a reversible TM-to-MI transition. Further analysis indicates that this transition is incomplete, with cis KCALP-azo existing in a ∼90% TM and ∼10% MI mixture.

10.1016/j.isci.2021.102771https://investigacion.unirioja.es/documentos/60fb70f11110fd076bab11f8