6533b853fe1ef96bd12acce4
RESEARCH PRODUCT
Gene flow relates to evolutionary divergence among populations at the range margin
Peter KaňuchAnna Cassel-lundhagenÅSa BerggrenBerrit KiehlBerrit KiehlAne T. LaugenAne T. LaugenAne T. LaugenMatthew Lowsubject
0106 biological sciencesRange (biology)Climatelcsh:MedicineBody sizeBiology010603 evolutionary biology01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyGene flowEvolutionsbiologi03 medical and health sciencesAdaptive divergenceMargin (machine learning)GeneticsGenetikGenetic isolation030304 developmental biologyEvolutionary Biology0303 health sciencesEcologyMorphological differentiationGeneral Neurosciencelcsh:RVDP::Matematikk og Naturvitenskap: 400Body sizeGeneral MedicineEvolutionary StudiesEvolutionary biologyOrthopteraEvolutionary divergenceGeneral Agricultural and Biological SciencesEntomologyZoologyGenetic isolatedescription
Background Morphological differentiation between populations resulting from local adaptations to environmental conditions is likely to be more pronounced in populations with increasing genetic isolation. In a previous study a positive clinal variation in body size was observed in isolated Roesel’s bush-cricket, Metrioptera roeselii, populations, but were absent from populations within a continuous distribution at the same latitudinal range. This observational study inferred that there was a phenotypic effect of gene flow on climate-induced selection in this species. Methods To disentangle genetic versus environmental drivers of population differences in morphology, we measured the size of four different body traits in wild-caught individuals from the two most distinct latitudinally-matched pairs of populations occurring at about 60°N latitude in northern Europe, characterised by either restricted or continuous gene flow, and corresponding individuals raised under laboratory conditions. Results Individuals that originated from the genetically isolated populations were always bigger (femur, pronotum and genital appendages) when compared to individuals from latitudinally-matched areas characterised by continuous gene flow between populations. The magnitude of this effect was similar for wild-caught and laboratory-reared individuals. We found that previously observed size cline variation in both male and female crickets was likely to be the result of local genetic adaptation rather than phenotypic plasticity. Conclusions This strongly suggests that restricted gene flow is of major importance for frequencies of alleles that participate in climate-induced selection acting to favour larger phenotypes in isolated populations towards colder latitudes.
year | journal | country | edition | language |
---|---|---|---|---|
2020-01-01 | PeerJ |