6533b853fe1ef96bd12acdfe

RESEARCH PRODUCT

Nonequilibrium critical scaling in quantum thermodynamics

Sougato BoseHenrik JohannessonSimone PaganelliPasquale SodanoGabriele De ChiaraTony J. G. ApollaroAbolfazl Bayat

subject

Quantum phase transitionFOS: Physical sciencesNon-equilibrium thermodynamics02 engineering and technology01 natural sciencesCondensed Matter - Strongly Correlated Electronsquant-phCritical point (thermodynamics)Quantum critical pointQuantum mechanics0103 physical sciencesStatistical physicscond-mat.stat-mech010306 general physicsQuantum thermodynamicsCondensed Matter - Statistical MechanicsPhysicsQuantum PhysicsStatistical Mechanics (cond-mat.stat-mech)Strongly Correlated Electrons (cond-mat.str-el)Density matrix renormalization group021001 nanoscience & nanotechnology2-IMPURITY KONDO PROBLEM; MATRIX RENORMALIZATION-GROUP; JARZYNSKI EQUALITY; CRITICAL-POINT; SYSTEMS; MODELcond-mat.str-elQuantum Physics (quant-ph)0210 nano-technologyKondo modelCritical exponent

description

The emerging field of quantum thermodynamics is contributing important results and insights into archetypal many-body problems, including quantum phase transitions. Still, the question whether out-of-equilibrium quantities, such as fluctuations of work, exhibit critical scaling after a sudden quench in a closed system has remained elusive. Here, we take a novel approach to the problem by studying a quench across an impurity quantum critical point. By performing density matrix renormalization group computations on the two-impurity Kondo model, we are able to establish that the irreversible work produced in a quench exhibits finite-size scaling at quantum criticality. This scaling faithfully predicts the equilibrium critical exponents for the crossover length and the order parameter of the model, and, moreover, implies a new exponent for the rescaled irreversible work. By connecting the irreversible work to the two-impurity spin correlation function, our findings can be tested experimentally.

https://doi.org/10.1103/physrevb.93.201106