6533b853fe1ef96bd12ad3a6

RESEARCH PRODUCT

The Lie algebra of polynomial vector fields and the Jacobian conjecture

Herwig HauserGerd Müller

subject

Polynomial (hyperelastic model)Discrete mathematicsGeneral MathematicsSubalgebraCartan subalgebraJacobian conjectureAutomorphismlaw.inventionCombinatoricsInvertible matrixlawLie algebraVector fieldMathematics

description

The Jacobian conjecture for polynomial maps ϕ:Kn→Kn is shown to be equivalent to a certain Lie algebra theoretic property of the Lie algebra\(\mathbb{D}\) of formal vector fields inn variables. To be precise, let\(\mathbb{D}_0 \) be the unique subalgebra of codimensionn (consisting of the singular vector fields),H a Cartan subalgebra of\(\mathbb{D}_0 \),Hλ the root spaces corresponding to linear forms λ onH and\(A = \oplus _{\lambda \in {\rm H}^ * } H_\lambda \). Then every polynomial map ϕ:Kn→Kn with invertible Jacobian matrix is an automorphism if and only if every automorphism Φ of\(\mathbb{D}\) with Φ(A)\( \subseteq A\) satisfies Φ(A)=A.

https://doi.org/10.1007/bf01367763