6533b853fe1ef96bd12ad3a6
RESEARCH PRODUCT
The Lie algebra of polynomial vector fields and the Jacobian conjecture
Herwig HauserGerd Müllersubject
Polynomial (hyperelastic model)Discrete mathematicsGeneral MathematicsSubalgebraCartan subalgebraJacobian conjectureAutomorphismlaw.inventionCombinatoricsInvertible matrixlawLie algebraVector fieldMathematicsdescription
The Jacobian conjecture for polynomial maps ϕ:Kn→Kn is shown to be equivalent to a certain Lie algebra theoretic property of the Lie algebra\(\mathbb{D}\) of formal vector fields inn variables. To be precise, let\(\mathbb{D}_0 \) be the unique subalgebra of codimensionn (consisting of the singular vector fields),H a Cartan subalgebra of\(\mathbb{D}_0 \),Hλ the root spaces corresponding to linear forms λ onH and\(A = \oplus _{\lambda \in {\rm H}^ * } H_\lambda \). Then every polynomial map ϕ:Kn→Kn with invertible Jacobian matrix is an automorphism if and only if every automorphism Φ of\(\mathbb{D}\) with Φ(A)\( \subseteq A\) satisfies Φ(A)=A.
year | journal | country | edition | language |
---|---|---|---|---|
1998-09-01 | Monatshefte f�r Mathematik |