0000000000417078

AUTHOR

Herwig Hauser

A rank theorem for analytic maps between power series spaces

research product

The cancellation property for direct products of analytic space germs

research product

Affine varieties and lie algebras of vector fields

In this article, we associate to affine algebraic or local analytic varieties their tangent algebra. This is the Lie algebra of all vector fields on the ambient space which are tangent to the variety. Properties of the relation between varieties and tangent algebras are studied. Being the tangent algebra of some variety is shown to be equivalent to a purely Lie algebra theoretic property of subalgebras of the Lie algebra of all vector fields on the ambient space. This allows to prove that the isomorphism type of the variety is determinde by its tangent algebra.

research product

Semi-Universal unfoldings and orbits of the contact group

research product

The Lie algebra of polynomial vector fields and the Jacobian conjecture

The Jacobian conjecture for polynomial maps ϕ:Kn→Kn is shown to be equivalent to a certain Lie algebra theoretic property of the Lie algebra\(\mathbb{D}\) of formal vector fields inn variables. To be precise, let\(\mathbb{D}_0 \) be the unique subalgebra of codimensionn (consisting of the singular vector fields),H a Cartan subalgebra of\(\mathbb{D}_0 \),Hλ the root spaces corresponding to linear forms λ onH and\(A = \oplus _{\lambda \in {\rm H}^ * } H_\lambda \). Then every polynomial map ϕ:Kn→Kn with invertible Jacobian matrix is an automorphism if and only if every automorphism Φ of\(\mathbb{D}\) with Φ(A)\( \subseteq A\) satisfies Φ(A)=A.

research product

Automorphisms of direct products of algebroid spaces

research product

Algebraic singularities have maximal reductive automorphism groups

LetX = On/ibe an analytic singularity where ṫ is an ideal of theC-algebraOnof germs of analytic functions on (Cn, 0). Letdenote the maximal ideal ofXandA= AutXits group of automorphisms. An abstract subgroupequipped with the structure of an algebraic group is calledalgebraic subgroupofAif the natural representations ofGon all “higher cotangent spaces”are rational. Letπbe the representation ofAon the first cotangent spaceandA1=π(A).

research product

Analytic curves in power series rings

research product