6533b853fe1ef96bd12ad4d5

RESEARCH PRODUCT

Neuromuscular Fatigue Is Not Different between Constant and Variable Frequency Stimulation

Alain MartinAlain VarrayMaria PapaiordanidouMaria PapaiordanidouMaxime BillotMaxime Billot

subject

MaleAnatomy and Physiologymedicine.medical_treatmentStimulationElectromyographyCELLULAR MECHANISMSACTIVATION[SCCO]Cognitive science0302 clinical medicineVOLUNTARYHuman PerformancePsychologyEvoked potentialMusculoskeletal SystemComputingMilieux_MISCELLANEOUSMultidisciplinaryCALCIUM STORESmedicine.diagnostic_test[ SDV.MHEP.PHY ] Life Sciences [q-bio]/Human health and pathology/Tissues and Organs [q-bio.TO]ChemistryQRPRESYNAPTIC INHIBITIONHUMAN SKELETAL-MUSCLEHealthy VolunteersElectrophysiologyMental HealthNeuromuscular fatigueEXCITABILITYMuscle Fatigue[ SCCO.NEUR ] Cognitive science/NeuroscienceCardiologyMuscleMedicine[ SCCO ] Cognitive sciencemedicine.symptomMuscle ContractionResearch ArticleMuscle contractionAdultmedicine.medical_specialtyClinical Research DesignScienceQUADRICEPS MUSCLENeurological System03 medical and health sciencesInternal medicinemedicineHumansSports and Exercise MedicineBiologySoleus muscleBehaviorSurvey ResearchCONTRACTIONSElectromyography030229 sport sciencesELECTRICAL-STIMULATIONEvoked Potentials MotorElectric StimulationIntensity (physics)Transcranial magnetic stimulationPhysiotherapy and Rehabilitation030217 neurology & neurosurgery

description

International audience; This study compared fatigue development of the triceps surae induced by two electrical stimulation protocols composed of constant and variable frequency trains (CFTs, VFTs, 450 trains, 30 Hz, 167 ms ON, 500 ms OFF and 146 ms ON, 500 ms OFF respectively). For the VFTs protocol a doublet (100 Hz) was used at the beginning of each train. The intensity used evoked 30% of a maximal voluntary contraction (MVC) and was defined using CFTs. Neuromuscular tests were performed before and after each protocol. Changes in excitation-contraction coupling were assessed by analysing the M-wave [at rest (M-max) and during MVC (M-sup)] and associated peak twitch (Pt). H-reflex [at rest (H-max) and during MVC (H-sup)] and the motor evoked potential (MEP) during MVC were studied to assess spinal and corticospinal excitability of the soleus muscle. MVC decrease was similar between the protocols (28%, P<0.05). M-max, M-sup and Pt decreased after both protocols (P<0.01). H-max/M-max was decreased (P<0.05), whereas H-sup/M-sup and MEP/M-sup remained unchanged after both protocols. The results indicate that CFTs and VFTs gave rise to equivalent neuromuscular fatigue. This fatigue resulted from alterations taking place at the muscular level. The finding that cortical and spinal excitability remained unchanged during MVC indicates that spinal and/or supraspinal mechanisms were activated to compensate for the loss of spinal excitability at rest.

https://hal.archives-ouvertes.fr/hal-01159591