6533b853fe1ef96bd12ad57a
RESEARCH PRODUCT
Crystalline-Size Dependence of Dual Emission Peak on Hybrid Organic Lead-Iodide Perovskite Films at Low Temperatures
Alfredo SeguraJuan P. Martínez-pastorJuan BisquertJuan BisquertElena Mas-marzáRaquel Chuliá-jordánsubject
Work (thermodynamics)PhotoluminescenceMaterials scienceexcitonsBand gapparticle beamsExcitonIodideBinding energyAnalytical chemistry02 engineering and technology010402 general chemistry7. Clean energy01 natural sciencesiodine compoundsCondensed Matter::Materials Sciencegrain size and shapePhysical and Theoretical Chemistrytemperature dependenceAbsorption (electromagnetic radiation)perovskitesemiconductor quantum wellsPerovskite (structure)chemistry.chemical_classificationFísicabinding energy021001 nanoscience & nanotechnologycrystalline materials0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialsenergy gapGeneral Energychemistrylayered semiconductorssolar cellslight absorptionphotoluminescence0210 nano-technologydescription
In this work, we have investigated the crystalline-size dependence of optical absorption and photoluminescence emission of CH3NH3PbI3 films, which is necessary to identify the potential practical applications of the gadgets based on perovskite films. This study was carried out at low temperatures to minimize the extra complexity induced by thermal effects. The purpose was to clarify the origin of the dual emission peak previously reported in the literature. We found that the grain size is responsible for the appearance or disappearance of this dual emission on CH3NH3PbI3 at low temperatures, whereas we have inferred that the thickness of the perovskite layer is a much more important factor than the size of the grains in the location of the energy of the band gap. Moreover, the increase in the grain size allows slowing down the phase transition. Additionally, we evidence a decrease in the effective Rydberg energy of the exciton in several samples, from 23–25 meV at 7 K to 12–13 meV at 165 K, by fitting to Elliott–Toyozawa theory. We have extracted other important physical parameters of perovskites from the photoluminescence-data deconvolution, such as the band gap, exciton–phonon interaction, and exciton binding energy. A new phase transition at 45.5 K was determined by the temperature dependence of full width at half-maximum and the integrated intensity of the photoluminescence, and it was confirmed by the radiative lifetime obtained from the time-resolved photoluminescence emission by means of time-correlated single-photon counting at different temperatures, excitation fluencies, and emission energies.
year | journal | country | edition | language |
---|---|---|---|---|
2018-01-01 | The Journal of Physical Chemistry C |