6533b853fe1ef96bd12ad5de
RESEARCH PRODUCT
Dom34 Links Translation to Protein O-mannosylation.
Eugen PfeiferPaula AlepuzPilar D. CanteroJessica S. HilbigRené GeissenSven KlugeJoachim F. ErnstStephan WickertQuentin LagadecLasse Van WijlickMateusz Juchimiuksubject
0301 basic medicineUntranslated regionCancer ResearchGlycosylationMolecular biologyHydrolasesOligonucleotidesGene ExpressionRNA-binding proteinCell Cycle ProteinsYeast and Fungal ModelsPathology and Laboratory MedicineMannosyltransferasesBiochemistryTranscription (biology)Untranslated RegionsCandida albicansMedicine and Health SciencesProtein IsoformsGenetics (clinical)CandidaFungal PathogensNucleotidesMessenger RNACell biologyEnzymesNucleic acidsDenaturationPhenotypesPhenotypeMedical MicrobiologySaccharomyces CerevisiaePathogensResearch ArticleGene isoformSaccharomyces cerevisiae Proteinslcsh:QH426-470NucleasesSaccharomyces cerevisiaeMycologyBiologyResearch and Analysis MethodsMicrobiology03 medical and health sciencesSaccharomycesModel OrganismsRibonucleasesDownregulation and upregulationEndoribonucleasesDNA-binding proteinsGeneticsHumansGeneMicrobial PathogensEcology Evolution Behavior and Systematics030102 biochemistry & molecular biologyOrganismsFungiBiology and Life SciencesProteinsRibosomal RNAbiology.organism_classificationMolecular biologyYeastRNA denaturationlcsh:Genetics030104 developmental biologyMolecular biology techniquesProtein BiosynthesisEnzymologyRNAProtein TranslationRibosomesdescription
In eukaryotes, Dom34 upregulates translation by securing levels of activatable ribosomal subunits. We found that in the yeast Saccharomyces cerevisiae and the human fungal pathogen Candida albicans, Dom34 interacts genetically with Pmt1, a major isoform of protein O-mannosyltransferase. In C. albicans, lack of Dom34 exacerbated defective phenotypes of pmt1 mutants, while they were ameliorated by Dom34 overproduction that enhanced Pmt1 protein but not PMT1 transcript levels. Translational effects of Dom34 required the 5′-UTR of the PMT1 transcript, which bound recombinant Dom34 directly at a CA/AC-rich sequence and regulated in vitro translation. Polysomal profiling revealed that Dom34 stimulates general translation moderately, but that it is especially required for translation of transcripts encoding Pmt isoforms 1, 4 and 6. Because defective protein N- or O-glycosylation upregulates transcription of PMT genes, it appears that Dom34-mediated specific translational upregulation of the PMT transcripts optimizes cellular responses to glycostress. Its translational function as an RNA binding protein acting at the 5′-UTR of specific transcripts adds another facet to the known ribosome-releasing functions of Dom34 at the 3′-UTR of transcripts.
year | journal | country | edition | language |
---|---|---|---|---|
2016-10-21 | PLoS Genetics |