6533b853fe1ef96bd12ad610

RESEARCH PRODUCT

Arbuscular mycorrhizal fungi influence host infection during epidemics in a wild plant pathosystem

Minna-maarit KytöviitaJenalle L. EckAnna-liisa LaineAnna-liisa Laine

subject

DYNAMICS0106 biological scienceshärmätPhysiologyDIVERSITYPlant ScienceDisease01 natural sciencesLOCAL ADAPTATIONMycorrhizae1110 Plant ScienceGenotypemykorritsasienetDISEASE RESISTANCEkasvitauditheinäratamo11832 Microbiology and virology2. Zero hungerprotective symbiont0303 health scienceseducation.field_of_studyPlantagoPodosphaera plantaginisPlantsplant pathogenmycorrhizal fungitaudinaiheuttajatSusceptible individual590 Animals (Zoology)GenotypemutualismPopulationAllopatric speciationZoologyBiologyPATHOGEN METAPOPULATION010603 evolutionary biologyMULTITROPHIC INTERACTIONS10127 Institute of Evolutionary Biology and Environmental Studies03 medical and health sciencesPlantago lanceolataEcosystemSymbiosiseducationPlantagoEcosystemplant diseasemutualismi (biologia)030304 developmental biologyHost Microbial InteractionsHost (biology)INDUCED RESISTANCEFungi1314 Physiology15. Life on land11831 Plant biologybiology.organism_classificationEVOLUTIONhärmäsienetMICROBE-MICROBE INTERACTIONS570 Life sciences; biologyMicrobial Interactionspowdery mildew

description

SummaryWhile pathogenic and mutualistic microbes are ubiquitous across ecosystems and often co-occur within hosts, how they interact to determine patterns of disease in genetically diverse wild populations is unknown.To test whether microbial mutualists provide protection against pathogens, and whether this varies among host genotypes, we conducted a field experiment in three naturally-occurring epidemics of a fungal pathogen, Podosphaera plantaginis, infecting a host plant, Plantago lanceolata, in the Åland Islands, Finland. In each population, we collected epidemiological data on experimental plants from six allopatric populations that had been inoculated with a mixture of mutualistic arbuscular mycorrhizal fungi or a non-mycorrhizal control.Inoculation with arbuscular mycorrhizal fungi increased growth in plants from every population, but also increased host infection rate. Mycorrhizal effects on disease severity varied among host genotypes and strengthened over time during the epidemic. Host genotypes that were more susceptible to the pathogen received stronger protective effects from inoculation.Our results show that arbuscular mycorrhizal fungi introduce both benefits and risks to host plants, and shift patterns of infection in host populations under pathogen attack. Understanding how mutualists alter host susceptibility to disease will be important for predicting infection outcomes in ecological communities and in agriculture.Plain Language SummaryBeneficial, ‘mycorrhizal’ fungi in roots help plants grow and may protect them from diseases caused by pathogenic microbes. This study shows that arbuscular mycorrhizal fungi can influence patterns of plant disease during pathogen outbreaks in a natural landscape.

10.1111/nph.18481http://dx.doi.org/10.1111/nph.18481