6533b853fe1ef96bd12ad69f
RESEARCH PRODUCT
Polynomial identities for the Jordan algebra of a degenerate symmetric bilinear form
Fabrizio Martinosubject
Discrete mathematicsSymmetric algebraNumerical AnalysisPure mathematicsAlgebra and Number TheoryJordan algebraRank (linear algebra)Symmetric bilinear formPolynomial identities gradings Jordan algebraOrthogonal complementBilinear formSettore MAT/02 - AlgebraDiscrete Mathematics and CombinatoricsGeometry and TopologyAlgebra over a fieldMathematicsVector spacedescription
Let J(n) be the Jordan algebra of a degenerate symmetric bilinear form. In the first section we classify all possible G-gradings on J(n) where G is any group, while in the second part we restrict our attention to a degenerate symmetric bilinear form of rank n - 1, where n is the dimension of the vector space V defining J(n). We prove that in this case the algebra J(n) is PI-equivalent to the Jordan algebra of a nondegenerate bilinear form.
year | journal | country | edition | language |
---|---|---|---|---|
2013-12-01 | Linear Algebra and its Applications |