6533b853fe1ef96bd12ad7ba

RESEARCH PRODUCT

Stress-Strain Law for Confined Concrete with Hardening or Softening Behavior

Piero ColajanniNino SpinellaMaurizio Papia

subject

Constant coefficientsMaterials scienceFiber reinforced polymers (FRP)Article SubjectStress–strain curvefiber reinforced cementitiuos matrix (FRCM)Fibre-reinforced plasticConfined concretefiber reinforced cementitiuos matrix (FRCM); Confined concrete; Fiber reinforced polymers (FRP); modelsmodelsSettore ICAR/09 - Tecnica Delle Costruzionilcsh:TA1-2040LawTangent modulusHardening (metallurgy)Algebraic expressionComposite materialConfinement of concrete general stress-strain law transverse reinforcement FRP FRCMCementitious matrixlcsh:Engineering (General). Civil engineering (General)SofteningCivil and Structural Engineering

description

This paper provides a new general stress-strain law for concrete confined by steel, fiber reinforced polymer (FRP), or fiber reinforced cementitious matrix (FRCM), obtained by a suitable modification of the well-known Sargin’s curve for steel confined concrete. The proposed law is able to reproduce stress-strain curve of any shape, having both hardening or softening behavior, by using a single closed-form simple algebraic expression with constant coefficients. The coefficients are defined on the basis of the stress and the tangent modulus of the confined concrete in three characteristic points of the curve, thus being related to physical meaningful parameters. It will be shown that if the values of the parameters of the law are deduced from experimental tests, the model is able to accurately reproduce the experimental curve. If they are evaluated on the basis of an analysis-oriented model, the proposed model provides a handy equivalent design model.

10.1155/2013/804904http://dx.doi.org/10.1155/2013/804904