6533b853fe1ef96bd12ad7be
RESEARCH PRODUCT
Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers
Christophe FinotLionel ProvostStefan WabnitzBertrand Kiblersubject
Amplified spontaneous emissionOptical fiberPhysics::Optics02 engineering and technology01 natural scienceslaw.invention010309 optics020210 optoelectronics & photonicsOpticsliquid waves; oceanography; dispersive fiberlaw0103 physical sciences0202 electrical engineering electronic engineering information engineeringoceanographyliquid wavesPhysics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]dispersive fiberContinuum (measurement)business.industryNonlinear opticsBreaking waveStatistical and Nonlinear PhysicsPulse shapingAtomic and Molecular Physics and OpticsNonlinear systembusinessPhotonic-crystal fiberdescription
International audience; We study the evolution of a pulse propagating in a normally dispersive fiber in the presence of Kerr nonlinearity. We review the temporal and spectral impact of optical wave-breaking in the development of a continuum. The impact of linear losses or gain is also investigated.
year | journal | country | edition | language |
---|---|---|---|---|
2008-10-31 |