6533b854fe1ef96bd12adefd
RESEARCH PRODUCT
Zero Viscosity Limit for Analytic Solutions of the Primitive Equations
Igor KukavicaMaria Carmela LombardoMarco Sammartinosubject
Analysis; Mathematics (miscellaneous); Mechanical EngineeringMechanical Engineering010102 general mathematicsMathematical analysisZero (complex analysis)Analysi01 natural scienceslaw.inventionEuler equations010101 applied mathematicsViscositysymbols.namesakeBoundary layerMathematics (miscellaneous)lawPrimitive equationssymbolsLimit (mathematics)0101 mathematicsHydrostatic equilibriumAsymptotic expansionAnalysisMathematicsdescription
The aim of this paper is to prove that the solutions of the primitive equations converge, in the zero viscosity limit, to the solutions of the hydrostatic Euler equations. We construct the solution of the primitive equations through a matched asymptotic expansion involving the solution of the hydrostatic Euler equation and boundary layer correctors as the first order term, and an error that we show to be \({O(\sqrt{\nu})}\). The main assumption is spatial analyticity of the initial datum.
year | journal | country | edition | language |
---|---|---|---|---|
2016-03-16 |