6533b854fe1ef96bd12ae101

RESEARCH PRODUCT

Apoptotic-like Leishmania exploit the host´s autophagy machinery to reduce T-cell-mediated parasite elimination

Peter CrauwelsSusi KrämerStefan TenzerRebecca BohnElena BankMax BastianGer Van ZandbergenStefan GottwaltPaul WaltherFlorian JäckelMeike Thomas

subject

log.ph logarithmic phaseT-LymphocytesApoptosisMACS magnetic-associated cell sortingMacrophageMFI mean fluorescence intensityLeishmaniasisMOI multiplicity of infectionanti-inflammatoryLeishmaniaeducation.field_of_studyPhagocytesCFSE carboxyfluorescein succinimidyl esterTGFB transforming growth factorAcquired immune systemapoptotic-like LeishmaniaPS phosphatidylserinehuman primary macrophagesCell biologyβ; TT tetanus toxoidCorrigendumProgrammed cell deathautophagyPopulationAntigen presentationANXA5 annexin VBasic Science Research PapersBiologyPhagocytosisCM complete mediumMAP1LC3/LC3 microtubule-associated protein 1 light chain 3AnimalsHumansMHC major histocompatibility complexIF immunofluorescenceeducationMolecular Biologyimmune evasionPBMCs peripheral blood mononuclear cellsT-cell proliferationIntracellular parasiteMacrophagesstat.ph stationary phaseAutophagyLm LeishmaniaCell BiologyLeishmaniabiology.organism_classificationIL interleukinLAP LC3-associated phagocytosisLAPhMDM human monocyte derived macrophage

description

Apoptosis is a well-defined cellular process in which a cell dies, characterized by cell shrinkage and DNA fragmentation. In parasites like Leishmania, the process of apoptosis-like cell death has been described. Moreover upon infection, the apoptotic-like population is essential for disease development, in part by silencing host phagocytes. Nevertheless, the exact mechanism of how apoptosis in unicellular organisms may support infectivity remains unclear. Therefore we investigated the fate of apoptotic-like Leishmania parasites in human host macrophages. Our data showed--in contrast to viable parasites--that apoptotic-like parasites enter an LC3(+), autophagy-like compartment. The compartment was found to consist of a single lipid bilayer, typical for LC3-associated phagocytosis (LAP). As LAP can provoke anti-inflammatory responses and autophagy modulates antigen presentation, we analyzed how the presence of apoptotic-like parasites affected the adaptive immune response. Macrophages infected with viable Leishmania induced proliferation of CD4(+) T-cells, leading to a reduced intracellular parasite survival. Remarkably, the presence of apoptotic-like parasites in the inoculum significantly reduced T-cell proliferation. Chemical induction of autophagy in human monocyte-derived macrophage (hMDM), infected with viable parasites only, had an even stronger proliferation-reducing effect, indicating that host cell autophagy and not parasite viability limits the T-cell response and enhances parasite survival. Concluding, our data suggest that apoptotic-like Leishmania hijack the host cells' autophagy machinery to reduce T-cell proliferation. Furthermore, the overall population survival is guaranteed, explaining the benefit of apoptosis-like cell death in a single-celled parasite and defining the host autophagy pathway as a potential therapeutic target in treating Leishmaniasis.

10.1080/15548627.2014.998904http://europepmc.org/articles/PMC4502818