6533b854fe1ef96bd12ae19d
RESEARCH PRODUCT
Salinity impairs photosynthetic capacity and enhances carotenoid-related gene expression and biosynthesis in tomato (Solanum lycopersicum L. cv. Micro-Tom)
Andrés Leiva-ampueroAndrés Leiva-ampueroMario AgurtoMario AgurtoMario AgurtoClaudia StangeClaudio Inostroza-blancheteauJosé Tomás MatusAndrea VegaAndrea VegaCamila HuidobroCamila HuidobroGustavo HoppeGustavo HoppeMarjorie Reyes-díazPaulo CanessaPaulo Canessasubject
0106 biological sciencesStomatal conductanceTomato fruitsSalt stressPhytoene Synthaselcsh:MedicinePlant SciencePhotosynthesis01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyLycopene Cyclase-Isomerase03 medical and health scienceschemistry.chemical_compoundLycopeneGeneticsPhotosynthesisAgricultural ScienceMolecular BiologyCarotenoid030304 developmental biologychemistry.chemical_classification0303 health sciencesbiologyChemistryGeneral Neurosciencelcsh:Rfood and beveragesGeneral Medicinebiology.organism_classificationAbiotic stressCarotenoidsPhotosynthetic capacityLycopeneSalinityHorticultureSolanumGeneral Agricultural and Biological SciencesBiotechnology010606 plant biology & botanyViolaxanthindescription
Carotenoids are essential components of the photosynthetic antenna and reaction center complexes, being also responsible for antioxidant defense, coloration, and many other functions in multiple plant tissues. In tomato, salinity negatively affects the development of vegetative organs and productivity, but according to previous studies it might also increase fruit color and taste, improving its quality, which is a current agricultural challenge. The fruit quality parameters that are increased by salinity are cultivar-specific and include carotenoid, sugar, and organic acid contents. However, the relationship between vegetative and reproductive organs and response to salinity is still poorly understood. Considering this, Solanum lycopersicum cv. Micro-Tom plants were grown in the absence of salt supplementation as well as with increasing concentrations of NaCl for 14 weeks, evaluating plant performance from vegetative to reproductive stages. In response to salinity, plants showed a significant reduction in net photosynthesis, stomatal conductance, PSII quantum yield, and electron transport rate, in addition to an increase in non-photochemical quenching. In line with these responses the number of tomato clusters decreased, and smaller fruits with higher soluble solids content were obtained. Mature-green fruits also displayed a salt-dependent higher induction in the expression of PSY1, PDS, ZDS, and LYCB, key genes of the carotenoid biosynthesis pathway, in correlation with increased lycopene, lutein, β-carotene, and violaxanthin levels. These results suggest a key relationship between photosynthetic plant response and yield, involving impaired photosynthetic capacity, increased carotenoid-related gene expression, and carotenoid biosynthesis.
year | journal | country | edition | language |
---|---|---|---|---|
2020-09-01 |