Search results for "Carotenoids"

showing 10 items of 145 documents

Condition-dependent effects of corticosterone on a carotenoid-based begging signal in house sparrows

2008

International audience; Begging is a complex display involving a variety of different visual and auditory signals. Parents are thought to use these signals to adjust their investment in food provisioning. The mechanisms that ensure the honesty of begging displays as indicators of need have been recently investigated. It has been shown that levels of corticosterone (Cort), the hormone released during the stress response, increase during food shortage and are associated with an increased begging rate. In a recent study in house sparrows, although exogenous Cort increased begging rate, parents did not accordingly adjust their provisioning rate. Here, we tested the hypothesis that Cort might af…

0106 biological sciences01 natural sciencesNesting BehaviorFight-or-flight responseBehavioral Neurosciencechemistry.chemical_compoundEndocrinologyCorticosteroneAdaptation PsychologicalBeggingpolycyclic compoundsHouse sparrowCarotenoidchemistry.chemical_classificationCarotenoid0303 health sciencesFlange colorationPigmentationPoor body conditionhumanities[ SDE.MCG ] Environmental Sciences/Global ChangesSparrowshormones hormone substitutes and hormone antagonistsmedicine.medical_specialtyendocrine system[SDE.MCG]Environmental Sciences/Global ChangesParent–offspring conflictBiologyAffect (psychology)010603 evolutionary biology03 medical and health sciencesInternal medicinemedicinePasser domesticusAnimalsImmune responseCondition dependent030304 developmental biologyMouth[ SDE.BE ] Environmental Sciences/Biodiversity and EcologyEndocrine and Autonomic SystemsFeeding BehaviorCarotenoids[SDE.ES]Environmental Sciences/Environmental and SocietyAnimal CommunicationEndocrinologychemistryImmune SystemBody ConstitutionParent–offspring conflict[SDE.BE]Environmental Sciences/Biodiversity and EcologyFood DeprivationCorticosteronePhotic Stimulation[ SDE.ES ] Environmental Sciences/Environmental and Society
researchProduct

Genetic Basis of Body Color and Spotting Pattern in Redheaded Pine Sawfly Larvae (Neodiprion lecontei)

2018

Abstract Pigmentation has emerged as a premier model for understanding the genetic basis of phenotypic evolution, and a growing catalog of color loci is starting to reveal biases in the mutations, genes, and genetic architectures underlying color variation in the wild. However, existing studies have sampled a limited subset of taxa, color traits, and developmental stages. To expand the existing sample of color loci, we performed QTL mapping analyses on two types of larval pigmentation traits that vary among populations of the redheaded pine sawfly (Neodiprion lecontei): carotenoid-based yellow body color and melanin-based spotting pattern. For both traits, our QTL models explained a substan…

0106 biological sciences0301 basic medicineCandidate geneGenetic LinkageGenome InsectQuantitative Trait LociQuantitative trait locusBiologyInvestigationsevolutionary genetics010603 evolutionary biology01 natural sciencestoukat03 medical and health sciencesQuantitative Trait HeritableGenetic linkageGeneticsGene familyAnimalssahapistiäisetconvergent evolutionDomesticationGeneGenetic Association Studies030304 developmental biologyGenetics0303 health sciencesHuman evolutionary geneticsPigmentationta1184väri (ominaisuudet)carotenoidsChromosome Mappingbiology.organism_classificationgeneettinen muuntelugenetic architectureHymenopteraGenetic architecturekarotenoiditmelaninSawflyNeodiprion lecontei030104 developmental biologyPhenotypeEvolutionary biologyLarvata1181Femalepigmentti (biologia)
researchProduct

In vivo photoprotection mechanisms observed from leaf spectral absorbance changes showing VIS–NIR slow-induced conformational pigment bed changes

2019

Abstract Regulated heat dissipation under excessive light comprises a complexity of mechanisms, whereby the supramolecular light-harvesting pigment–protein complex (LHC) shifts state from light harvesting towards heat dissipation, quenching the excess of photo-induced excitation energy in a non-photochemical way. Based on whole-leaf spectroscopy measuring upward and downward spectral radiance fluxes, we studied spectrally contiguous (hyperspectral) transient time series of absorbance A(λ,t) and passively induced chlorophyll fluorescence F(λ,t) dynamics of intact leaves in the visible and near-infrared wavelengths (VIS–NIR, 400–800 nm) after sudden strong natural-like illumination exposure. …

0106 biological sciences0301 basic medicineChlorophyllMaterials sciencePassive chlorophyll a fluorescencePigment–protein dynamicsLightHyperspectral remote sensingAnalytical chemistryJuglansPlant Science01 natural sciencesBiochemistryEnergy quenchingFluorescenceAbsorbance03 medical and health sciencesTransmittanceFiber Optic TechnologySpectroscopyChlorophyll fluorescencechemistry.chemical_classificationSpectroscopy Near-InfraredAbsorbed photosynthetic active radiation (APAR)Non-photochemical quenching (NPQ)Cell BiologyGeneral MedicineEquipment DesignPigments BiologicalPhotochemical ProcessesCarotenoidsPlant LeavesWavelength030104 developmental biologychemistryXanthophyllRadianceOriginal ArticleAbsorbance shiftMorusControlled heat dissipation010606 plant biology & botanyPhotosynthesis Research
researchProduct

Synthetic conversion of leaf chloroplasts into carotenoid-rich plastids reveals mechanistic basis of natural chromoplast development

2020

Plastids, the defining organelles of plant cells, undergo physiological and morphological changes to fulfill distinct biological functions. In particular, the differentiation of chloroplasts into chromoplasts results in an enhanced storage capacity for carotenoids with industrial and nutritional value such as beta-carotene (provitamin A). Here, we show that synthetically inducing a burst in the production of phytoene, the first committed intermediate of the carotenoid pathway, elicits an artificial chloroplast-to-chromoplast differentiation in leaves. Phytoene overproduction initially interferes with photosynthesis, acting as a metabolic threshold switch mechanism that weakens chloroplast i…

0106 biological sciences0301 basic medicineChloroplastsNuclear gene[SDV]Life Sciences [q-bio]ArabidopsisProtein EngineeringPhotosynthesis01 natural sciences03 medical and health scienceschemistry.chemical_compoundPhytoeneTobaccoChromoplast[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyPlastidsPlastidCarotenoidComputingMilieux_MISCELLANEOUSPlant Proteinschemistry.chemical_classificationCarotenoidPhytoeneMultidisciplinarySyntheticfood and beveragesCell DifferentiationChromoplastBiological Sciencesbeta CarotenePlant cellCarotenoidsCell biology02.- Poner fin al hambre conseguir la seguridad alimentaria y una mejor nutrición y promover la agricultura sosteniblePlant LeavesChloroplastGENETICA030104 developmental biologychemistryDifferentiationChromoplat010606 plant biology & botanyProceedings of the National Academy of Sciences
researchProduct

Carotenoids and Some Other Pigments from Fungi and Yeasts †

2021

Carotenoids are an essential group of compounds that may be obtained by microbiological synthesis. They are instrumental in various areas of industry, medicine, agriculture, and ecology. The increase of carotenoids’ demand at the global market is now essential. At the moment, the production of natural carotenoids is more expensive than obtaining their synthetic forms, but several new approaches/directions on how to decrease this difference were developed during the last decades. This review briefly describes the information accumulated until now about the beneficial effects of carotenoids on human health protection, their possible application in the treatments of various diseases, and their…

0106 biological sciences0301 basic medicineEndocrinology Diabetes and Metabolismpigmentslcsh:QR1-502macromolecular substancesReviewBiologyyeast01 natural sciencesBiochemistrylcsh:Microbiology03 medical and health sciencesHuman health010608 biotechnologyMolecular BiologyBeneficial effectsCarotenoidchemistry.chemical_classificationbusiness.industrycarotenoidsfood and beveragesBiotechnology030104 developmental biologychemistryAgriculturebusinessMetabolites
researchProduct

Neurosporaxanthin Overproduction by Fusarium fujikuroi and Evaluation of Its Antioxidant Properties

2020

17 Páginas.-- 5 Figuras

0106 biological sciences0301 basic medicineFusariumAntioxidantPhysiologymedicine.medical_treatmentClinical BiochemistryMutantquenchingfree radicalsFree radicalsXanthophylls01 natural sciencesBiochemistryNeurospora03 medical and health sciencesQuenching010608 biotechnologymedicineoxidative stressMolecular BiologyCarotenoidMyceliumchemistry.chemical_classificationbiologyChemistrylcsh:RM1-950carotenoidsFungifood and beveragesCell Biologybiology.organism_classificationCarotenoidslcsh:Therapeutics. Pharmacology030104 developmental biologyBiochemistryOxidative stressXanthophyllLiposomesGibberellinfungixanthophyllsAntioxidants
researchProduct

The Application of a Plant Biostimulant Based on Seaweed and Yeast Extract Improved Tomato Fruit Development and Quality

2020

Plant biostimulants are under investigation as innovative products to improve plant production and fruit quality, without resulting in environmental and food contaminations. Here, the effects of the application of Expando, a biostimulant based on seaweed and yeast extracts, on plant productivity, fruit ripening times, and fruit quality of Solanum lycopersicum var. Micro-Tom were evaluated. After biostimulant treatment, a two-week reduction of ripening times and a concomitant enhancement of the production percentage during the earliest ripening times, in terms of both fruit yield (+110%) and size (+85%), were observed. Concerning fruit quality, proximate analysis showed that tomatoes treated…

0106 biological sciencesDPPHPhytochemicalslcsh:QR1-50201 natural sciencesBiochemistryripening timeAntioxidantslcsh:Microbiologychemistry.chemical_compoundSolanum lycopersicumSettore BIO/10 - BiochimicaYeastsSettore BIO/04 - Fisiologia Vegetale0303 health sciencesMineralsABTSbiologyChemistry<i>Solanum lycopersicum</i>carotenoidsfood and beveragesRipeningfruit sizeBioactive compoundLycopeneHorticulturetocopherolsmineral contentArticle03 medical and health sciencesNutraceuticalPicratesYeast extractBenzothiazolesMolecular Biologypolyphenols030304 developmental biologySolanum lycopersicum; carotenoids; fruit quality; fruit size; lycopene; mineral content; polyphenols; ripening time; tocopherolsBiphenyl Compoundsfungifruit qualitybiology.organism_classificationSeaweedlycopeneFruitCarotenoids Fruit quality Lycopene Mineral content Polyphenols Ripening time Solanum lycopersicum TocopherolsSolanumSulfonic Acids010606 plant biology & botany
researchProduct

Fruit Yield and Quality of ‘Valencia’ Orange Trees under Long-Term Partial Rootzone Drying

2020

Climate, soil and tree water status, fruit yields and quality of &lsquo

0106 biological sciencesIrrigationDeficit irrigationCitruvitamin COrange (colour)01 natural sciencesValencia orangejuice yieldcitruslcsh:AgriculturefoodSoluble solidsmedicineDehydrationsoluble solidsSugarHectareMathematicsCarotenoiddeficit irrigationlcsh:Scarotenoids04 agricultural and veterinary sciencesmedicine.diseaseSoluble solidfood.foodSettore AGR/03 - Arboricoltura Generale E Coltivazioni ArboreeHorticulture040103 agronomy & agriculture0401 agriculture forestry and fisherieswater productivityfruit developmentAgronomy and Crop Science010606 plant biology & botanyAgronomy
researchProduct

Geographical trends in the yolk carotenoid composition of the pied flycatcher (Ficedula hypoleuca).

2010

Carotenoids in the egg yolks of birds are considered to be important antioxidants and immune stimulants during the rapid growth of embryos. Yolk carotenoid composition is strongly affected by the carotenoid composition of the female’s diet at the time of egg formation. Spatial and temporal differences in carotenoid availability may thus be reflected in yolk concentrations. To assess whether yolk carotenoid concentrations or carotenoid profiles show any large-scale geographical trends or differences among habitats, we collected yolk samples from 16 European populations of the pied flycatcher, Ficedula hypoleuca. We found that the concentrations and proportions of lutein and some other xantho…

0106 biological sciencesLuteinRange (biology)Maternal effectsPopulation DynamicsBreedingXanthophylls01 natural sciencesAntioxidantsTreesSongbirdschemistry.chemical_compoundEgg antioxidantspolycyclic compoundsCarotenoidLepidoptera larvaechemistry.chemical_classification0303 health scienceseducation.field_of_studyPrincipal Component AnalysisbiologyGeographyEcologyfood and beveragesbeta CaroteneEgg YolkZeaxanthinEuropeembryonic structuresFemaleTree phenologyfood.ingredientFood ChainPopulation010603 evolutionary biologyInsectivorous birds03 medical and health sciencesfoodYolkAnimalseducationEcology Evolution Behavior and Systematics030304 developmental biologyorganic chemicalsLuteinFicedula15. Life on landbiology.organism_classificationCarotenoidsbiological factorsDietchemistryXanthophyllPhysiological ecology - Original PaperOecologia
researchProduct

Do carotenoid-based sexual traits signal the availability of non-pigmentary antioxidants?

2006

SUMMARY Carotenoid-based signals are thought to be indicators of male quality because they must be obtained from the diet and might thus indicate the ability of individuals to gather high-quality food. However, carotenoids are also known to have important physiological functions as immunoenhancers and antioxidants, and, as such, carotenoid-based sexual traits have also been suggested to reflect the health and antioxidant status of their bearers. This last idea is based on the hypothesis that carotenoids that are allocated to sexual signals are no longer available for the detoxification system. Recently, this hypothesis has been challenged on the grounds that the antioxidant activity is not …

0106 biological sciencesMaleAntioxidantPhysiologymedicine.medical_treatmentMESH: Random AllocationMESH : LuteinMESH: BeakXanthophylls01 natural sciencesAntioxidantsRandom Allocationpolycyclic compounds[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/SymbiosisMESH: AnimalsFood scienceMESH : FinchesCarotenoidMESH: MelatoninMelatoninchemistry.chemical_classification0303 health sciencesSex CharacteristicsbiologyMESH : MelatoninPigmentationMESH : PigmentationBeakfood and beveragesPasserinecarotenoïdsBiochemistryMESH : AntioxidantsMESH : XanthophyllsMESH: Finchesmedicine.drugMESH: Sex CharacteristicsoxidationMESH : Malefree radicalsmacromolecular substances[ SDV.BBM.BM ] Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyAquatic ScienceMESH: Lutein010603 evolutionary biologyMESH: PigmentationMESH : Random AllocationMelatonin03 medical and health sciencessexual advertisementZeaxanthinsbiology.animalmedicineAnimalsMolecular BiologyZebra finchEcology Evolution Behavior and Systematics030304 developmental biologyMESH : Carotenoidsorganic chemicalsMESH: Antioxidantszebra finchLuteinMESH : Sex Characteristics[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyMESH: XanthophyllsCarotenoidsMESH: Malebiological factorsMESH : BeakchemistryInsect ScienceMESH: CarotenoidsAnimal Science and ZoologyMESH : AnimalsFinches[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/SymbiosisThe Journal of experimental biology
researchProduct