6533b854fe1ef96bd12ae1d2

RESEARCH PRODUCT

Aging of biogenic secondary organic aerosol via gas-phase OH radical reactions

Karl-heinz NaumannNeil M. DonahueOttmar MöhlerHendrik FuchsTheo BrauersMattias HallquistKaytlin M. HenryMarc-christopher ReinnigMia FroschPeter BarmetAndreas WahnerRalf TillmannThomas F. MentelLars Peter MüllerThomas LeisnerThorsten HoffmannKent SaloUrs BaltenspergerAndré S. H. PrévôtMerete BildeArnaud P. PraplanBirger BohnPeter F. DecarloAstrid Kiendler-scharrC. SpindlerHarald SaathoffTorsten TritscherJosef DommenHans P. Dorn

subject

OzoneFree Radicals010504 meteorology & atmospheric sciencesUltraviolet Rayschemistry.chemical_element010501 environmental sciencesMass spectrometrybehavioral disciplines and activities01 natural sciencesOxygenMass SpectrometryAtmospherechemistry.chemical_compoundOzoneOrganic Chemicals0105 earth and related environmental sciencesAerosolsMultidisciplinaryOzonolysisAtmosphereHydroxyl RadicalReproducibility of ResultsAerosolOxygenModels ChemicalchemistryAtmospheric chemistryEnvironmental chemistryPhysical SciencesSolventsHydroxyl radical

description

The Multiple Chamber Aerosol Chemical Aging Study (MUCHACHAS) tested the hypothesis that hydroxyl radical (OH) aging significantly increases the concentration of first-generation biogenic secondary organic aerosol (SOA). OH is the dominant atmospheric oxidant, and MUCHACHAS employed environmental chambers of very different designs, using multiple OH sources to explore a range of chemical conditions and potential sources of systematic error. We isolated the effect of OH aging, confirming our hypothesis while observing corresponding changes in SOA properties. The mass increases are consistent with an existing gap between global SOA sources and those predicted in models, and can be described by a mechanism suitable for implementation in those models.

10.1073/pnas.1115186109http://www.pnas.org/content/109/34/13503.abstract?sid=9cc01f3b-c8ef-4cc8-ae29-b0bbdfc62dd0