6533b854fe1ef96bd12ae93c
RESEARCH PRODUCT
Arrays of Josephson junctions in an environment with vanishing impedance
M. AunolaJukka P. PekolaJ. Jussi Topparisubject
PhysicsJosephson effectCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed Matter - SuperconductivitySupercurrentFOS: Physical sciencesCoulomb blockadeHardware_PERFORMANCEANDRELIABILITYCondensed Matter::Mesoscopic Systems and Quantum Hall EffectSuperconductivity (cond-mat.supr-con)Pi Josephson junctionCondensed Matter::SuperconductivityQuantum mechanicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)Hardware_INTEGRATEDCIRCUITSCooper pairElectrical impedanceQuantum tunnellingHardware_LOGICDESIGNVoltagedescription
The Hamiltonian operator for an unbiased array of Josephson junctions with gate voltages is constructed when only Cooper pair tunnelling and charging effects are taken into account. The supercurrent through the system and the pumped current induced by changing the gate voltages periodically are discussed with an emphasis on the inaccuracies in the Cooper pair pumping. Renormalisation of the Hamiltonian operator is used in order to reliably parametrise the effects due to inhomogeneity in the array and non-ideal gating sequences. The relatively simple model yields an explicit, testable prediction based on three experimentally motivated and determinable parameters.
year | journal | country | edition | language |
---|---|---|---|---|
1999-11-23 | Physical Review B |