6533b854fe1ef96bd12aeaf6
RESEARCH PRODUCT
Vibronic Model for Intercommunication of Localized Spins via Itinerant Electron
Boris TsukerblatBoris TsukerblatJuan M. Clemente-juanSergey M. AldoshinAndrew PaliiEugenio Coronadosubject
02 engineering and technologyElectron010402 general chemistry01 natural sciencesMolecular physicsDelocalized electronElectron transferPhysics::Atomic and Molecular ClustersMoleculePhysics::Chemical PhysicsPhysical and Theoretical ChemistryPhysicsSpinsQuàntums Teoria dels021001 nanoscience & nanotechnologyInductive coupling3. Good health0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCoupling (physics)General EnergyMolecular vibrationEnergiaCondensed Matter::Strongly Correlated Electrons0210 nano-technologyFisicoquímicadescription
In this article, we propose a vibronic pseudo Jahn–Teller model for partially delocalized mixed-valence molecules aimed to describe the magnetic coupling between the localized spins mediated by the delocalized electron. The simplest partially delocalized system that retains the main studied features is assumed to consist of a one-electron mixed-valence dimer, which is connected to the two terminal magnetic ions. The model involves the following key interactions: electron transfer in the spin-delocalized subsystem of a mixed-valence molecule, which is mimicked by a dimeric unit, coupling of the itinerant electrons with the molecular vibrations, and isotropic magnetic exchange between the localized spins and delocalized electron. The proposed model, which can be referred to as the vibronic “toy” model, is intentionally restricted to the named basic interactions and therefore it is aimed to describe only the key features of a wide class of mixed-valence clusters exhibiting partial electronic delocalization w...
year | journal | country | edition | language |
---|---|---|---|---|
2019-01-31 | The Journal of Physical Chemistry C |