6533b854fe1ef96bd12aec6e

RESEARCH PRODUCT

Glueball masses from ratios of path integrals

Michele Della MorteLeonardo Giusti

subject

PhysicsParticle Physics QCD lattice gauge theoryGlueballHigh Energy Physics - Lattice (hep-lat)FOS: Physical sciencesParity (physics)Charge (physics)Partition function (mathematics)Quantum numberFIS/02 - FISICA TEORICA MODELLI E METODI MATEMATICIHigh Energy Physics - LatticeCorrelation functionQuantum mechanicsPath integral formulationMonte Carlo integrationMathematical physics

description

By generalizing our previous work on the parity symmetry, the partition function of a Yang-Mills theory is decomposed into a sum of path integrals each giving the contribution from multiplets of states with fixed quantum numbers associated to parity, charge conjugation, translations, rotations and central conjugations. Ratios of path integrals and correlation functions can then be computed with a multi-level Monte Carlo integration scheme whose numerical cost, at a fixed statistical precision and at asymptotically large times, increases power-like with the time extent of the lattice. The strategy is implemented for the SU(3) Yang-Mills theory, and a full-fledged computation of the mass and multiplicity of the lightest glueball with vacuum quantum numbers is carried out at two values of the lattice spacing (0.17 and 0.12 fm).

http://hdl.handle.net/10281/31349