6533b854fe1ef96bd12aeff7
RESEARCH PRODUCT
Impact of assisted reproductive technologies on the regulation of imprinted genes and transposable elements in Human blood cord and placenta
Cécile Chouxsubject
Séquences répétéesImprinted genesPlacentaRepeated sequencesCord blood[SDV.GEN.GH] Life Sciences [q-bio]/Genetics/Human geneticsSang de cordonGènes soumis à empreintedescription
It is estimated that more than five million children have been born by Assisted Reproductive Technologies (ART) worldwide, representing up to 4% of all births. As around 10% of reproductive-aged couples are currently infertile, providing them with treatment options is a public health issue. However, the safety of these techniques has not been fully demonstrated. Notably, the rate of placenta-related adverse pregnancy outcomes could be increased after ART. Moreover, adverse perinatal outcomes, a higher risk of major malformations and imprinting disorders have also been reported in children born following ART. These issues combined raise the question of a potential ART-induced epigenetic vulnerability.The aim of this thesis was to investigate the epigenetic regulation of imprinted genes (IGs) and transposable elements (TEs) in the placenta and cord blood of children conceived by ART and to compare them to children conceived naturally.By way of introduction, we wrote a comprehensive review about phenotypic and epigenetic modifications induced by ART in embryos, placenta and cord blood either in human or animal models.Then, an extensive cohort of almost 250 patients was prospectively included, resulting in 4 groups of ART techniques and 4 groups of controls stratified on the time to pregnancy.From this cohort, the first question we investigated was the effect of in vitro fertilization (IVF) on DNA methylation and/or transcription of TEs and IGs in cord blood and placenta collected at birth. For this purpose, we selected 51 pregnant women after IVF with fresh embryo transfer at day -2 and compared them with 48 controls pregnant within 1 year of stopping contraception. We studied the DNA methylation and expression of 3 imprinted DMRs and 4 TEs. DNA methylation levels for H19/IGF2 and KCNQ1OT1 DMRs, LINE-1 and ERVFRD-1 in the placenta were lower in the IVF/ICSI group than in the control group. The expression level of ERVFRD-1 in the placenta was also lower in the IVF/ICSI group than in the control group. These modifications in epigenetic regulation may influence some compensation mechanisms developed throughout pregnancy after ART, as discussed in our review.We then intended to determine if these DNA methylation changes in IGs were associated with histone modifications. From the previously mentioned cohort, we selected the 16 patients from the IVF/ICSI group who presented with below the 5th percentile of percentage placenta DNA methylation for at least one of the previously studied DMRs. These patients were compared with 16 controls matched for parity, new-born sex, and gestational age at delivery. Permissive (H3K4me2 and me3 and H3K9ac) and repressive (H3K9me2 and me3) histone marks were studied. The results revealed a significantly higher quantity of H3K4me2 in the IVF/ICSI group than in the natural conception group for H19/IGF2 and KCNQ1OT1 DMRs. The quantity of both repressive marks at H19/IGF2 and SNURF DMRs was significantly lower in the IVF/ICSI group than in the natural conception group.These data demonstrate that DNA hypomethylation at imprinted DMRs may be associated with an increase in permissive histone marks and a decrease in repressive histone marks. This is consistent with a more “active” chromatin conformation on the normally repressed allele.Our findings, together with the literature data, reinforce the hypothesis that some mechanisms are established in the placenta after ART, probably to mediate placental plasticity and compensate primary disorders in trophoblastic invasion, and written through epigenetic changes such as DNA methylation but also histone modifications.Although some questions remain unanswered, this thesis paves the way for further original studies, notably to assess the impact of frozen-thawed embryo transfer and to decipher the role of infertility per se.
year | journal | country | edition | language |
---|---|---|---|---|
2018-01-01 |