6533b854fe1ef96bd12af55f
RESEARCH PRODUCT
The Sulfated Laminarin Triggers a Stress Transcriptome before Priming the SA- and ROS-Dependent Defenses during Grapevine's Induced Resistance against Plasmopara viticola
Adrien GauthierSophie TrouvelotJani KelloniemiPatrick FrettingerDavid WendehenneXavier DaireJean-marie JoubertAlberto FerrariniMassimo DelledonneVictor FlorsBenoit Poinssotsubject
0106 biological sciencesbeta-Glucanslcsh:MedicineCropsCyclopentanes01 natural sciencesBiochemistryFruitsAgricultural ProductionIntegrated ControlGene Expression Regulation PlantStress Physiological[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyPlant ImmunityVitisOxylipinslcsh:ScienceBiologyGlucansComputingMilieux_MISCELLANEOUSDisease ResistancePlant Diseases2. Zero hungerMultidisciplinaryCell DeathPlant Biochemistrylcsh:R010401 analytical chemistryCell MembraneCrop DiseasesCorrectionAgricultureOrganic FarmingSustainable Agriculture0104 chemical sciences[SDV.BV.PEP]Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacyOomyceteslcsh:QPest ControlAgrochemicalsReactive Oxygen SpeciesSalicylic AcidTranscriptome010606 plant biology & botanyResearch ArticleSignal Transductiondescription
Grapevine (Vitis vinifera) is susceptible to many pathogens which cause significant losses to viticulture worldwide. Chemical control is available, but agro-ecological concerns have raised interest in alternative methods, especially in triggering plant immunity by elicitor treatments. The β-glucan laminarin (Lam) and its sulfated derivative (PS3) have been previously demonstrated to induce resistance in grapevine against downy mildew (Plasmopara viticola). However, if Lam elicits classical grapevine defenses such as oxidative burst, pathogenesis-related (PR)-proteins and phytoalexin production, PS3 triggered grapevine resistance via a poorly understood priming phenomenon. The aim of this study was to identify the molecular mechanisms of the PS3-induced resistance. For this purpose we studied i) the signaling events and transcriptome reprogramming triggered by PS3 treatment on uninfected grapevine, ii) grapevine immune responses primed by PS3 during P. viticola infection. Our results showed that i) PS3 was unable to elicit reactive oxygen species (ROS) production, cytosolic Ca(2+) concentration variations, mitogen-activated protein kinase (MAPK) activation but triggered a long lasting plasma membrane depolarization in grapevine cells, ii) PS3 and Lam shared a common stress-responsive transcriptome profile that partly overlapped the salicylate- (SA) and jasmonate-(JA)-dependent ones. After P. viticola inoculation, PS3 specifically primed the SA- and ROS-dependent defense pathways leading to grapevine induced resistance against this biotroph. Interestingly pharmacological approaches suggested that the plasma membrane depolarization and the downstream ROS production are key events of the PS3-induced resistance.
year | journal | country | edition | language |
---|---|---|---|---|
2018-03-08 | PLoS ONE |