6533b854fe1ef96bd12af579

RESEARCH PRODUCT

Integration of functions ranging in complex Riesz space and some applications in harmonic analysis

Francesco TuloneAntonio BoccutoV. A. Skvortsov

subject

Henstock integralSeries (mathematics)Riesz representation theoremRiesz potentialintegral transformGeneral MathematicsMathematical analysisMathematics::Classical Analysis and ODEsHilbert spacegroup characterRiesz spacezero-dimensional compact Abelian groupcharacterHenstock—Kurzweil integralComplex Riesz space character Henstock integral basis integral transform.Riesz transformsymbols.namesakeFourier transformM. Riesz extension theorembasissymbolsMathematics (all)complex Riesz spaceMathematics

description

The theory of Henstock—Kurzweil integral is generalized to the case of functions ranging in complex Riesz space R and defined on any zero-dimensional compact Abelian group. The constructed integral is used to solve the problem of recovering the R-valued coefficients of series in systems of characters of these groups by using generalized Fourier formulas.

https://doi.org/10.1134/s0001434615070032