6533b854fe1ef96bd12af58e

RESEARCH PRODUCT

MiR-133 Modulates the β1Adrenergic Receptor Transduction Cascade.

Gabriele G. SchiattarellaMaria Luisa ColoritoMarco MongilloGiacomo ViggianiGiovanni EspositoVittoria Di MauroLeonardo EliaMaria Giovanna GualazziGiulia BorilePaolo KunderfrancoMarie Louise BangPierluigi CarulloBarbara Di StefanoGianluigi CondorelliTania ZagliaGianluigi PirontiAlessandra CastaldiGiuliano Giuseppe StirparoDaniele Catalucci

subject

MalePhysiologyMessengerheart failureApoptosiscardiomyocytesInbred C57BLSecond Messenger SystemsTransgenicRats Sprague-DawleyBeta-1 adrenergic receptorMiceGenes ReporterReceptorsCyclic AMPGuanine Nucleotide Exchange FactorsMyocytes CardiacAlpha-1D adrenergic receptor3' Untranslated RegionsCells CulturedCulturedbiologyChemistryadrenergic beta-1 receptor antagonists; cardiac; cyclic AMP; heart failure; microRNAs; myocytes; 3' Untranslated Regions; Adenylyl Cyclases; Animals; Apoptosis; Cells Cultured; Cyclic AMP; Cyclic AMP-Dependent Protein Kinases; Disease Progression; Gene Expression Regulation; Genes Reporter; Guanine Nucleotide Exchange Factors; Male; Metoprolol; Mice; Mice Inbred C57BL; Mice Transgenic; MicroRNAs; Myocardium; Myocytes Cardiac; RNA Messenger; Rats; Rats Sprague-Dawley; Receptors Adrenergic beta-1; Recombinant Fusion Proteins; Second Messenger Systems; Physiology; Cardiology and Cardiovascular Medicine; Medicine (all)Medicine (all)Cell biologyAdrenergicadrenergic beta-1 receptor antagonistsDisease ProgressionCARDIAC HYPERTROPHYSignal transductionCardiology and Cardiovascular MedicineAdenylyl CyclasesMetoprololmedicine.medical_specialtyAdrenergic receptorcardiacCellsRecombinant Fusion ProteinsMice Transgenicbeta-1Alpha-1B adrenergic receptorInternal medicinecAMPmedicineAnimalsRNA MessengerReporterPressure overloadalpha and beta adrenoceptorsMyocytesMyocardiumBeta adrenergic receptor kinaseCyclic AMP-Dependent Protein KinasesAlpha-1A adrenergic receptorRatsMice Inbred C57BLMicroRNAsEndocrinologyGenesGene Expression Regulationbiology.proteinRNASprague-DawleyReceptors Adrenergic beta-1MicroRNAs; alpha and beta adrenoceptors; cardiomyocytes; CARDIAC HYPERTROPHY; cAMP

description

Rationale : The sympathetic nervous system plays a fundamental role in the regulation of myocardial function. During chronic pressure overload, overactivation of the sympathetic nervous system induces the release of catecholamines, which activate β-adrenergic receptors in cardiomyocytes and lead to increased heart rate and cardiac contractility. However, chronic stimulation of β-adrenergic receptors leads to impaired cardiac function, and β-blockers are widely used as therapeutic agents for the treatment of cardiac disease. MicroRNA-133 (miR-133) is highly expressed in the myocardium and is involved in controlling cardiac function through regulation of messenger RNA translation/stability. Objective : To determine whether miR-133 affects β-adrenergic receptor signaling during progression to heart failure. Methods and Results : Based on bioinformatic analysis, β 1 -adrenergic receptor (β 1 AR) and other components of the β 1 AR signal transduction cascade, including adenylate cyclase VI and the catalytic subunit of the cAMP-dependent protein kinase A, were predicted as direct targets of miR-133 and subsequently validated by experimental studies. Consistently, cAMP accumulation and activation of downstream targets were repressed by miR-133 overexpression in both neonatal and adult cardiomyocytes following selective β 1 AR stimulation. Furthermore, gain-of-function and loss-of-function studies of miR-133 revealed its role in counteracting the deleterious apoptotic effects caused by chronic β 1 AR stimulation. This was confirmed in vivo using a novel cardiac-specific TetON-miR-133 inducible transgenic mouse model. When subjected to transaortic constriction, TetON-miR-133 inducible transgenic mice maintained cardiac performance and showed attenuated apoptosis and reduced fibrosis compared with control mice. Conclusions : miR-133 controls multiple components of the β 1 AR transduction cascade and is cardioprotective during heart failure.

10.1161/circresaha.115.303252http://hdl.handle.net/11577/2840702