6533b854fe1ef96bd12af5c8
RESEARCH PRODUCT
Instabilities of optical solitons and Hamiltonian singular solutions in a medium of finite extension
Antonio PicozziDominique SugnyHans-rudolf JauslinElie Assématsubject
Physics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Integrable system16. Peace & justice01 natural sciencesInstabilityAtomic and Molecular Physics and OpticsDavydov solitonHamiltonian system010309 opticssymbols.namesakeClassical mechanicsSingularity0103 physical sciencessymbolsGravitational singularitySoliton010306 general physicsHamiltonian (quantum mechanics)Nonlinear Sciences::Pattern Formation and Solitonsdescription
International audience; We analyze the role of soliton solutions and Hamiltonian singularities in the dynamics of counterpropagating waves in a medium of finite spatial extension. The soliton solution can become unstable due to the finite extension of the system. We show that the spatiotemporal dynamics then relaxes toward a Hamiltonian singular state of a nature different than that of the soliton state. This phenomenon can be explained through a geometrical analysis of the singularities of the stationary Hamiltonian system.
year | journal | country | edition | language |
---|---|---|---|---|
2011-07-11 | Physical Review A |