6533b854fe1ef96bd12af5c8

RESEARCH PRODUCT

Instabilities of optical solitons and Hamiltonian singular solutions in a medium of finite extension

Antonio PicozziDominique SugnyHans-rudolf JauslinElie Assémat

subject

Physics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Integrable system16. Peace & justice01 natural sciencesInstabilityAtomic and Molecular Physics and OpticsDavydov solitonHamiltonian system010309 opticssymbols.namesakeClassical mechanicsSingularity0103 physical sciencessymbolsGravitational singularitySoliton010306 general physicsHamiltonian (quantum mechanics)Nonlinear Sciences::Pattern Formation and Solitons

description

International audience; We analyze the role of soliton solutions and Hamiltonian singularities in the dynamics of counterpropagating waves in a medium of finite spatial extension. The soliton solution can become unstable due to the finite extension of the system. We show that the spatiotemporal dynamics then relaxes toward a Hamiltonian singular state of a nature different than that of the soliton state. This phenomenon can be explained through a geometrical analysis of the singularities of the stationary Hamiltonian system.

https://doi.org/10.1103/physreva.84.013809