6533b854fe1ef96bd12af60c

RESEARCH PRODUCT

An eigenvalue Dirichlet problem involving the p-Laplacian with discontinuous nonlinearities

Nicola GiovannelliGabriele Bonanno

subject

Dirichlet problemDiscontinuous nonlinearitiesApplied MathematicsMathematical analysisp-LaplacianMultiple solutionsMathematics::Optimization and ControlDirichlet's energyMathematics::Spectral TheoryEigenvalue Dirichlet problemCritical points of nonsmooth functionsNonlinear systemsymbols.namesakeDirichlet eigenvalueDirichlet's principleRayleigh–Faber–Krahn inequalitysymbolsp-LaplacianEigenvalues and eigenvectorsAnalysisMathematics

description

AbstractA multiplicity result for an eigenvalue Dirichlet problem involving the p-Laplacian with discontinuous nonlinearities is obtained. The proof is based on a three critical points theorem for nondifferentiable functionals.

10.1016/j.jmaa.2004.11.053http://dx.doi.org/10.1016/j.jmaa.2004.11.053