6533b854fe1ef96bd12af64b
RESEARCH PRODUCT
A Two-State Computational Investigation of Methane C-H and Ethane C-C Oxidative Addition to [CpM(PH3)]n+ (M=Co, Rh, Ir;n=0, 1)
Ivo CacelliRinaldo PoliAlban PetitPhilippe Richardsubject
Coordination sphereC-C activation010402 general chemistryPhotochemistry7. Clean energy01 natural sciencesCatalysisReductive eliminationMetalSpin crossover[CHIM.COOR]Chemical Sciences/Coordination chemistrySinglet stateC-H activation010405 organic chemistryHydrideChemistryOrganic ChemistryGeneral ChemistrySpin crossoverOxidative addition0104 chemical sciencesliminationDensity functional calculations13. Climate actionvisual_artvisual_art.visual_art_mediumPhysical chemistryGround statedescription
Reductive elimination of methane from methyl hydride half-sandwich phosphane complexes of the Group 9 metals has been investigated by DFT calculations on the model system [CpM(PH(3))(CH(3))(H)] (M = Co, Rh, Ir). For each metal, the unsaturated product has a triplet ground state; thus, spin crossover occurs during the reaction. All relevant stationary points on the two potential energy surfaces (PES) and the minimum energy crossing point (MECP) were optimized. Spin crossover occurs very near the sigma-CH(4) complex local minimum for the Co system, whereas the heavier Rh and Ir systems remain in the singlet state until the CH(4) molecule is almost completely expelled from the metal coordination sphere. No local sigma-CH(4) minimum was found for the Ir system. The energetic profiles agree with the nonexistence of the Co(III) methyl hydride complex and with the greater thermal stability of the Ir complex relative to the Rh complex. Reductive elimination of methane from the related oxidized complexes [CpM(PH(3))(CH(3))(H)](+) (M = Rh, Ir) proceeds entirely on the spin doublet PES, because the 15-electron [CpM(PH(3))](+) products have a doublet ground state. This process is thermodynamically favored by about 25 kcal mol(-1) relative to the corresponding neutral system. It is essentially barrierless for the Rh system and has a relatively small barrier (ca. 7.5 kcal mol(-1)) for the Ir system. In both cases, the reaction involves a sigma-CH(4) intermediate. Reductive elimination of ethane from [CpM(PH(3))(CH(3))(2)](+) (M = Rh, Ir) shows a similar thermodynamic profile, but is kinetically quite different from methane elimination from [CpM(PH(3))(CH(3))(H)](+): the reductive elimination barrier is much greater and does not involve a sigma-complex intermediate. The large difference in the calculated activation barriers (ca. 12.0 and ca. 30.5 kcal mol(-1) for the Rh and Ir systems, respectively) agrees with the experimental observation, for related systems, of oxidatively induced ethane elimination when M = Rh, whereas the related Ir systems prefer to decompose by alternative pathways.
year | journal | country | edition | language |
---|---|---|---|---|
2006-01-01 |