6533b855fe1ef96bd12afe0a

RESEARCH PRODUCT

Complex group algebras of finite groups: Brauer's Problem 1

Alexander Moretó

subject

Mathematics(all)Modular representation theoryPure mathematicsFinite groupBrauer's Problem 1Group (mathematics)General MathematicsCharacter degreesCombinatoricsRepresentation theory of the symmetric groupGroup of Lie typeSymmetric groupSimple groupGroup algebraFinite groupRepresentation theory of finite groupsMathematics

description

Abstract Brauer's Problem 1 asks the following: What are the possible complex group algebras of finite groups? It seems that with the present knowledge of representation theory it is not possible to settle this question. The goal of this paper is to present a partial solution to this problem. We conjecture that if the complex group algebra of a finite group does not have more than a fixed number m of isomorphic summands, then its dimension is bounded in terms of m . We prove that this is true for every finite group if it is true for the symmetric groups. The problem for symmetric groups reduces to an explicitly stated question in number theory or combinatorics.

https://doi.org/10.1016/j.aim.2006.02.006