6533b855fe1ef96bd12afe3d

RESEARCH PRODUCT

Insensitivity of Hawking radiation to an invariant Planck-scale cutoff

José Navarro-salasGonzalo J. OlmoLeonard ParkerIván AgullóIvan Agullo

subject

PhysicsNuclear and High Energy PhysicsQuantum field theory in curved spacetime010308 nuclear & particles physicsBlack hole information paradoxFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Lorentz covariance01 natural sciencesGeneral Relativity and Quantum CosmologyPartícules (Física nuclear)Black holeTheoretical physicsHigh Energy Physics::TheoryGeneral Relativity and Quantum CosmologyQuantum mechanics0103 physical sciencesQuantum gravityCovariant transformationFísica nuclearQuantum field theory010306 general physicsHawking radiation

description

A disturbing aspect of Hawking's derivation of black hole radiance is the need to invoke extreme conditions for the quantum field that originates the emitted quanta. It is widely argued that the derivation requires the validity of the conventional relativistic field theory to arbitrarily high, trans-Planckian scales. We stress in this note that this is not necessarily the case if the question is presented in a covariant way. We point out that Hawking radiation is immediately robust against an invariant Planck-scale cutoff. This important feature of Hawking radiation is relevant for a quantum gravity theory that preserves, in some way, the Lorentz symmetry.

10.1103/physrevd.80.047503http://hdl.handle.net/10261/20001