6533b855fe1ef96bd12afeaa

RESEARCH PRODUCT

The Role of Combined ICRF and NBI Heating in JET Hybrid Plasmas in Quest for High D-T Fusion Yield

E. R. SolanoEva BelonohyJoerg HobirkM. TsalasN. KrawczykJonathan GravesD. FrigioneC. D. ChallisD. KingM. ValisaJet ContributorsPhilippe JacquetD. GallartG. SipsMervi MantsinenErnesto LercheE. JoffrinMarc GonicheEwa PawelecJacob ErikssonMorten LennholmA. CzarneckaCarl Hellesen

subject

TokamakQC1-999Nuclear engineering7. Clean energy01 natural sciencesFusió nuclear controlada010305 fluids & plasmasPlasma currentlaw.inventionlawNBI heating0103 physical sciencesNeutron010306 general physicsFusionFusion reactionsHigh D-T Fusion YieldPhysicsFusionJet (fluid):Física [Àrees temàtiques de la UPC]ICRFbusiness.industryPhysicsElectrical engineeringPlasmaYield (chemistry)Beta (plasma physics)JET Hybrid PlasmasNBI Heatingbusiness

description

Combined ICRF and NBI heating played a key role in achieving the world-record fusion yield in the first deuterium-tritium campaign at the JET tokamak in 1997. The current plans for JET include new experiments with deuterium-tritium (D-T) plasmas with more ITER-like conditions given the recently installed ITER-like wall (ILW). In the 2015-2016 campaigns, significant efforts have been devoted to the development of high-performance plasma scenarios compatible with ILW in preparation of the forthcoming D-T campaign. Good progress was made in both the inductive (baseline) and the hybrid scenario: a new record JET ILW fusion yield with a significantly extended duration of the high-performance phase was achieved. This paper reports on the progress with the hybrid scenario which is a candidate for ITER longpulse operation (∼1000 s) thanks to its improved normalized confinement, reduced plasma current and higher plasma beta with respect to the ITER reference baseline scenario. The combined NBI+ICRF power in the hybrid scenario was increased to 33 MW and the record fusion yield, averaged over 100 ms, to 2.9x1016 neutrons/s from the 2014 ILW fusion record of 2.3x1016 neutrons/s. Impurity control with ICRF waves was one of the key means for extending the duration of the high-performance phase. The main results are reviewed covering both key core and edge plasma issues. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. Peer Reviewed

10.1051/epjconf/201715703032https://hdl.handle.net/2117/110735