6533b855fe1ef96bd12aff99

RESEARCH PRODUCT

Kurzweil--Henstock and Kurzweil--Henstock--Pettis integrability of strongly measurable functions

B. BongiornoLuisa Di PiazzaKazimierz Musiał

subject

Pettis integralMathematics::Functional AnalysisPure mathematicssymbols.namesakeMeasurable functionGeneral MathematicsMathematical analysisMathematics::Classical Analysis and ODEsBanach spacesymbolsDisjoint setsLebesgue integrationMathematics

description

We study the integrability of Banach valued strongly measurable functions defined on $[0,1]$. In case of functions $f$ given by $\sum _{n=1}^{\infty } x_n\chi _{E_n}$, where $x_n $ belong to a Banach space and the sets $E_n$ are Lebesgue measurable and pairwise disjoint subsets of $[0,1]$, there are well known characterizations for the Bochner and for the Pettis integrability of $f$ (cf Musial (1991)). In this paper we give some conditions for the Kurzweil-Henstock and the Kurzweil-Henstock-Pettis integrability of such functions.

http://hdl.handle.net/10447/21564