6533b855fe1ef96bd12affcb
RESEARCH PRODUCT
Modulation of brain PUFA content in different experimental models of mice.
Niyazi AcarAgnès NadjarSophie LayéStéphane GrégoireVéronique De SmedtCorinne JoffreLionel Bretillonsubject
0301 basic medicineMaleAgingClinical Biochemistryfat-1 miceHippocampuschemistry.chemical_compoundMice0302 clinical medicineCerebellumDocosahexaenoic acid (DHA)fatty-acid-compositionFood science2. Zero hungerchemistry.chemical_classificationCerebral CortexArachidonic Acidanxiety-like behaviordocosahexaenoic acidaccelerated mouse samBiochemistryDocosahexaenoic acidArachidonic acid (AA)Arachidonic acidFemaleFatty acid compositionSAMP8 miceBrain regionsPolyunsaturated fatty acidN-3 PUFAdiet-induced obesityDocosahexaenoic AcidsHypothalamusPrefrontal CortexBiology03 medical and health sciencesrat-brainDietary Fats UnsaturatedGenetic modelAnimals[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biology[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyN 3 pufaBrain Chemistryage-related-changesFatty acidCell BiologyModels Theoreticalgene-expressiondepressive-like behaviorMice Inbred C57BL030104 developmental biologychemistry030217 neurology & neurosurgeryBrain Stemdescription
International audience; The relative amounts of arachidonic acid (AA) and docosahexaenoic acid (DHA) govern the different functions of the brain. Their brain levels depend on structures considered, on fatty acid dietary supply and the age of animals. To have a better overview of the different models available in the literature we here compared the brain fatty acid composition in various mice models (C57BL/6J, CD1, Fat-1, SAMP8 mice) fed with different n-3 PUFA diets (deficient, balanced, enriched) in adults and aged animals. Our results demonstrated that brain AA and DHA content is 1) structure-dependent; 2) strain-specific; 3) differently affected by dietary approaches when compared to genetic model of PUFA modulation; 4) different in n-3 PUFA deficient aged C57BL6/J when compared to SAMP8 mouse model of aging. From these experiments, we highlight the difficulty to compare results obtained in different mouse models, different strains, different brain regions and different ages.
year | journal | country | edition | language |
---|---|---|---|---|
2016-11-01 | Prostaglandins, leukotrienes, and essential fatty acids |