6533b855fe1ef96bd12affe0
RESEARCH PRODUCT
Laser-induced enhancement of tunneling in NHD2
Hans-dieter MeyerFabien GattiRoberto MarquardtMatthieu SalaStéphane Guérinsubject
010304 chemical physicsChemistryLinear polarizationScanning tunneling spectroscopyGeneral Physics and AstronomyHartreeLaser01 natural scienceslaw.invention[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistrylaw0103 physical sciences[ CHIM.THEO ] Chemical Sciences/Theoretical and/or physical chemistryPhysical and Theoretical ChemistryAtomic physics010306 general physicsTunneling timeQuantum tunnellingComputingMilieux_MISCELLANEOUSdescription
We apply and explore techniques aiming at enhancing the tunneling by laser fields, originally developed for a one-dimensional model, to a complete six-dimensional vibrational model of the inversion motion in NHD(2). The computational study is performed with the multi-configuration time-dependent Hartree method. Assuming an ideal three-dimensional alignment we obtain a driven tunneling time twenty times smaller than the natural one, in rather good agreement with an oversimplified three-state model. In the case of one-dimensional alignment, a linearly polarized field leads to a poor enhancement of the tunneling probability, after averaging over the rotation about the alignment axis, whereas a circularly polarized field improves the rotationally averaged tunneling probability at the end of the pulse.
year | journal | country | edition | language |
---|---|---|---|---|
2012-06-11 |