6533b855fe1ef96bd12affee

RESEARCH PRODUCT

Cationic Supramolecular Vesicular Aggregates for Pulmonary Tissue Selective Delivery in Anticancer Therapy

Gaetano GiammonaMassimo FrestaChristian CeliaChristian CeliaGennara CavallaroMariano LicciardiDonato CoscoNicolò MauroDonatella Paolino

subject

DrugBiodistributionMacromolecular Substancesmedia_common.quotation_subjectSupramolecular chemistryAntineoplastic Agents02 engineering and technology010402 general chemistryHydrazideDeoxycytidine01 natural sciencesBiochemistryGemcitabine Hydrochloridesupramolecular chemistryStructure-Activity Relationshipchemistry.chemical_compoundDrug Delivery SystemsCationsDrug DiscoveryTumor Cells CulturedAnimalsHumansTissue DistributionCationic liposomeRats WistarGeneral Pharmacology Toxicology and Pharmaceuticsvesicular aggregatesCell Proliferationmedia_commonPharmacologyLiposomeDose-Response Relationship DrugMolecular StructurenanoparticleOrganic ChemistryCationic polymerization021001 nanoscience & nanotechnologyGemcitabineRats0104 chemical scienceschemistryBiochemistryantitumor agentliposomeMolecular MedicineDrug Screening Assays Antitumor0210 nano-technology

description

The biopharmaceutical properties of supramolecular vesicular aggregates (SVAs) were characterized with regard to their physicochemical features and compared with cationic liposomes (CLs). Neutral and cationic SVAs were synthesized using two different copolymers of poly(aspartyl hydrazide) by thin-layer evaporation and extrusion techniques. Both copolymers were self-assembled in pre-formulated liposomes and formed neutral and cationic SVAs. Gemcitabine hydrochloride (GEM) was used as an anticancer drug and loaded by a pH gradient remote loading procedure, which significantly increased drug loading inside the SVAs. The resulting average size of the SVAs was 100 nm. The anticancer activity of GEM-loaded neutral and cationic SVAs was tested in human alveolar basal epithelial (A549) and colorectal cancer (CaCo-2) cells. GEM-loaded cationic SVAs increased the anticancer activity in A549 and CaCo-2 cells relative to free drug, neutral SVAs, and CLs. In vivo biodistribution in Wistar rats showed that cationic SVAs accumulate at higher concentrations in lung tissue than neutral SVAs and CLs. Cationic SVAs may therefore serve as an innovative future therapy for pulmonary carcinoma.

https://doi.org/10.1002/cmdc.201600070