6533b855fe1ef96bd12b077f

RESEARCH PRODUCT

The “chessboard” classification scheme of mineral deposits: Mineralogy and geology from aluminum to zirconium

Harald G. Dill

subject

Mineral explorationLithologyMetamorphic rockGeological surveyGeneral Earth and Planetary SciencesMineralogySedimentary rockSequence stratigraphyEconomic geologyMineral resource classificationGeology

description

Abstract Economic geology is a mixtum compositum of all geoscientific disciplines focused on one goal, finding new mineral depsosits and enhancing their exploitation. The keystones of this mixtum compositum are geology and mineralogy whose studies are centered around the emplacement of the ore body and the development of its minerals and rocks. In the present study, mineralogy and geology act as x - and y -coordinates of a classification chart of mineral resources called the “chessboard” (or “spreadsheet”) classification scheme. Magmatic and sedimentary lithologies together with tectonic structures (1 - D/pipes, 2 - D/veins) are plotted along the x -axis in the header of the spreadsheet diagram representing the columns in this chart diagram. 63 commodity groups, encompassing minerals and elements are plotted along the y - axis, forming the lines of the spreadsheet. These commodities are subjected to a tripartite subdivision into ore minerals, industrial minerals/rocks and gemstones/ornamental stones. Further information on the various types of mineral deposits, as to the major ore and gangue minerals, the current models and the mode of formation or when and in which geodynamic setting these deposits mainly formed throughout the geological past may be obtained from the text by simply using the code of each deposit in the chart. This code can be created by combining the commodity (lines) shown by numbers plus lower caps with the host rocks or structure (columns) given by capital letters. Each commodity has a small preface on the mineralogy and chemistry and ends up with an outlook into its final use and the supply situation of the raw material on a global basis, which may be updated by the user through a direct link to databases available on the internet. In this case the study has been linked to the commodity database of the US Geological Survey. The internal subdivision of each commodity section corresponds to the common host rock lithologies (magmatic, sedimentary, and metamorphic) and structures. Cross sections and images illustrate the common ore types of each commodity. Ore takes priority over the mineral. The minerals and host rocks are listed by their chemical and mineralogical compositions, respectively, separated from the text but supplemented with cross-references to the columns and lines, where they prevalently occur. A metallogenetic-geodynamic overview is given at the bottom of each column in the spreadsheet. It may be taken as the “sum” or the “ mean” of a number of geodynamic models and ideas put forward by the various researchers for all the deposits pertaining to a certain clan of lithology or structure. This classical or conservative view of metallotects related to the common plate tectonic settings is supplemented by an approach taken for the first time for such a number of deposits, using the concepts of sequence stratigraphy. This paper, so as to say, is a “launch pad” for a new mindset in metallogenesis rather than the final result. The relationship supergene–hypogene and syngenetic–epigenetic has been the topic of many studies for ages but to keep them as separate entities is often unworkable in practice, especially in the so-called epithermal or near-surface/shallow deposits. Vein-type and stratiform ore bodies are generally handled also very differently. To get these different structural elements (space) and various mineralizing processes (time) together and to allow for a forward modeling in mineral exploration, architectural elements of sequence stratigraphy are adapted to mineral resources. Deposits are geological bodies which need accommodation space created by the environment of formation and the tectonic/geodynamic setting through time. They are controlled by horizontal to subhorizontal reference planes and/or vertical structures. Prerequisites for the deposits to evolve are thermal and/or mechanical gradients. Thermal energy is for most of the settings under consideration deeply rooted in the mantle. A perspective on how this concept might work is given in the text by a pilot project on mineral deposits in Central Europe and in the spreadsheet classification scheme by providing a color-coded categorization into 1. mineralization mainly related to planar architectural elements, e.g. sequence boundaries subaerial and unconformities 2. mineralization mainly related to planar architectural elements, e.g. sequence boundaries submarine, transgressive surfaces and maximum flooding zones/surfaces) 3. mineralization mainly controlled by system tracts (lowstand system tracts transgressive system tracts, highstand system tracts) 4. mineralization of subvolcanic or intermediate level to be correlated with the architectural elements of basin evolution 5. mineralization of deep level to be correlated with the deep-seated structural elements. There are several squares on the chessboard left blank mainly for lack of information on sequence stratigraphy of mineral deposits. This method has not found many users yet in mineral exploration. This review is designed as an “interactive paper” open, for amendments in the electronic spreadsheet version and adjustable to the needs and wants of application, research and training in geosciences. Metamorphic host rock lithologies and commodities are addressed by different color codes in the chessboard classification scheme.

https://doi.org/10.1016/j.earscirev.2009.10.011