6533b855fe1ef96bd12b0a05
RESEARCH PRODUCT
Zero-range model of traffic flow.
Reinhard MahnkeRosemary J. HarrisKaupuzs Jsubject
Work (thermodynamics)Physics - Physics and SocietyStatistical Mechanics (cond-mat.stat-mech)Stochastic processThermodynamicsFOS: Physical sciencesPhysics and Society (physics.soc-ph)Critical valueTraffic flowJMetastabilityMaster equationCluster (physics)ddc:530Statistical physicsStationary stateCondensed Matter - Statistical MechanicsMathematicsdescription
A multi--cluster model of traffic flow is studied, in which the motion of cars is described by a stochastic master equation. Assuming that the escape rate from a cluster depends only on the cluster size, the dynamics of the model is directly mapped to the mathematically well-studied zero-range process. Knowledge of the asymptotic behaviour of the transition rates for large clusters allows us to apply an established criterion for phase separation in one-dimensional driven systems. The distribution over cluster sizes in our zero-range model is given by a one--step master equation in one dimension. It provides an approximate mean--field dynamics, which, however, leads to the exact stationary state. Based on this equation, we have calculated the critical density at which phase separation takes place. We have shown that within a certain range of densities above the critical value a metastable homogeneous state exists before coarsening sets in. Within this approach we have estimated the critical cluster size and the mean nucleation time for a condensate in a large system. The metastablity in the zero-range process is reflected in a metastable branch of the fundamental flux--density diagram of traffic flow. Our work thus provides a possible analytical description of traffic jam formation as well as important insight into condensation in the zero-range process.
year | journal | country | edition | language |
---|---|---|---|---|
2005-04-26 | Physical review. E, Statistical, nonlinear, and soft matter physics |