6533b855fe1ef96bd12b123f

RESEARCH PRODUCT

Logistic Growth Described by Birth-Death and Diffusion Processes

Paola ParaggioAntonio Di Crescenzo

subject

General MathematicsGompertz functionLogistic regressionConditional expectation01 natural sciencestransition probabilities03 medical and health sciencesFano factorComputer Science (miscellaneous)Applied mathematicsItô equationLimit (mathematics)0101 mathematicsLogistic functionStratonovich equationEngineering (miscellaneous)first-passage-time problem030304 developmental biologyMathematicslogistic model0303 health scienceslcsh:MathematicsItô equation010102 general mathematicsdiffusion processeslogistic model; birth-death process; first-passage-time problem; transition probabilities; Fano factor; coefficient of variation; diffusion processes; Itô equation; Stratonovich equation; diffusion in a potentiallcsh:QA1-939Birth–death processcoefficient of variationDiffusion processbirth-death processInflection pointdiffusion in a potential

description

We consider the logistic growth model and analyze its relevant properties, such as the limits, the monotony, the concavity, the inflection point, the maximum specific growth rate, the lag time, and the threshold crossing time problem. We also perform a comparison with other growth models, such as the Gompertz, Korf, and modified Korf models. Moreover, we focus on some stochastic counterparts of the logistic model. First, we study a time-inhomogeneous linear birth-death process whose conditional mean satisfies an equation of the same form of the logistic one. We also find a sufficient and necessary condition in order to have a logistic mean even in the presence of an absorbing endpoint. Then, we obtain and analyze similar properties for a simple birth process, too. Then, we investigate useful strategies to obtain two time-homogeneous diffusion processes as the limit of discrete processes governed by stochastic difference equations that approximate the logistic one. We also discuss an interpretation of such processes as diffusion in a suitable potential. In addition, we study also a diffusion process whose conditional mean is a logistic curve. In more detail, for the considered processes we study the conditional moments, certain indices of dispersion, the first-passage-time problem, and some comparisons among the processes.

10.3390/math7060489http://dx.doi.org/10.3390/math7060489