6533b855fe1ef96bd12b1255
RESEARCH PRODUCT
Low-Cost Optical Mapping Systems for Panoramic Imaging of Complex Arrhythmias and Drug-Action in Translational Heart Models.
Peter D. LeeJorge G. QuintanillaJorge G. QuintanillaLeslie M. LoewJosé MilletPing YanFrancisco J. ChorroJosé Manuel Alfonso-almazánDavid Filgueiras-ramaDavid Filgueiras-ramaConrado J. Calvosubject
0301 basic medicineCARDIAC ELECTROPHYSIOLOGYComputer scienceSwineINGENIERIA MECANICAElectrophysiological Phenomena030204 cardiovascular system & hematology0302 clinical medicineTachycardiaIntracellular free calciumComputer visionMultidisciplinaryCardiac electrophysiologyRabbit heartOptical ImagingHeartCor MalaltiesDiagnòstic per la imatgeCosts and Cost AnalysisVENTRICULAR-FIBRILLATIONTACHYCARDIACardiovascular researchPersistent Atril-FibrillationFisiologiaModels BiologicalArticleMECHANISMSTECNOLOGIA ELECTRONICA03 medical and health sciencesOptical imagingSpatio-Temporal AnalysisOptical mappingPERSISTENT ATRIAL-FIBRILLATIONAnimalsBioenginyeriaVOLTAGESistema cardiovascularModality (human–computer interaction)3-DIMENSIONAL SURFACE RECONSTRUCTIONEPICARDIAL ACTIVATIONbusiness.industryArrhythmias CardiacElectrophysiological PhenomenaElectrophysiology030104 developmental biology3-Dimensional Surface ReconstructionTemporal resolutionRABBIT HEARTArtificial intelligencebusinessACTION-POTENTIALSdescription
[EN] Panoramic optical mapping is the primary method for imaging electrophysiological activity from the entire outer surface of Langendorff-perfused hearts. To date, it is the only method of simultaneously measuring multiple key electrophysiological parameters, such as transmembrane voltage and intracellular free calcium, at high spatial and temporal resolution. Despite the impact it has already had on the fields of cardiac arrhythmias and whole-heart computational modeling, present-day system designs precludes its adoption by the broader cardiovascular research community because of their high costs. Taking advantage of recent technological advances, we developed and validated low-cost optical mapping systems for panoramic imaging using Langendorff-perfused pig hearts, a clinically-relevant model in basic research and bioengineering. By significantly lowering financial thresholds, this powerful cardiac electrophysiology imaging modality may gain wider use in research and, even, teaching laboratories, which we substantiated using the lower-cost Langendorff-perfused rabbit heart model.
year | journal | country | edition | language |
---|---|---|---|---|
2017-02-27 |