6533b855fe1ef96bd12b1332

RESEARCH PRODUCT

Roton-roton crossover in strongly correlated dipolar Bose-nonstnon condensates

Rainer KaltseisRobert E. ZillichD. HufnaglV. Apaja

subject

Condensed Matter::Quantum GasesPhysicsCondensed matter physicsBose gasta114Condensed Matter::OtherGeneral Physics and AstronomyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectRotonlaw.inventionDipolelawQuasiparticleElectric dipole transitionAnisotropyExcitationBose–Einstein condensate

description

We study the pair correlations and excitations of a dipolar Bose gas layer. The anisotropy of the dipole-dipole interaction allows us to tune the strength of pair correlations from strong to weak perpendicular and weak to strong parallel to the layer by increasing the perpendicular trap frequency. This change is accompanied by a roton-roton crossover in the spectrum of collective excitations, from a roton caused by the head-to-tail attraction of dipoles to a roton caused by the side-by-side repulsion, while there is no roton excitation for intermediate trap frequencies. We discuss the nature of these two kinds of rotons and the relation to instabilities of dipolar Bose gases. In both regimes of trap frequencies where rotons occur, we observe strong damping of collective excitations by decay into two rotons.

10.1103/physrevlett.107.065303http://juuli.fi/Record/0052517511