6533b855fe1ef96bd12b1395

RESEARCH PRODUCT

Dynamical heterogeneities in a supercooled Lennard-Jones liquid

Peter H. PooleSteven J. PlimptonWalter KobSharon C. GlotzerClaudio Donati

subject

PhysicsCondensed matter physicsMathematical modelGeneral Physics and AstronomyFOS: Physical sciences02 engineering and technologyDisordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Disordered Systems and Neural Networks021001 nanoscience & nanotechnology01 natural sciencesCalculation methodsMolecular dynamicsCorrelation function (statistical mechanics)Lennard-Jones potential0103 physical sciencesParticleDynamical heterogeneity010306 general physics0210 nano-technologySupercooling

description

We present the results of a large scale molecular dynamics computer simulation study in which we investigate whether a supercooled Lennard-Jones liquid exhibits dynamical heterogeneities. We evaluate the non-Gaussian parameter for the self part of the van Hove correlation function and use it to identify ``mobile'' particles. We find that these particles form clusters whose size grows with decreasing temperature. We also find that the relaxation time of the mobile particles is significantly shorter than that of the bulk, and that this difference increases with decreasing temperature.

http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:A1997YA30200019&KeyUID=WOS:A1997YA30200019