0000000000594174

AUTHOR

Claudio Donati

0000-0001-8688-1651

showing 4 related works from this author

Growing range of correlated motion in a polymer melt on cooling towards the glass transition

1999

Many liquids cooled to low temperatures form glasses (amorphous solids) instead of crystals. As the glass transition is approached, molecules become localized and relaxation times increase by many orders of magnitude1. Many features of this ‘slowing down’ are reasonably well described2 by the mode-coupling theory of supercooled liquids3. The ideal form of this theory predicts a dynamical critical temperature T c at which the molecules become permanently trapped in the ‘cage’ formed by their neighbours, and vitrification occurs. Although there is no sharp transition, because molecules do eventually escape their cage, its signature can still be observed in real and simulated liquids. Unlike c…

chemistry.chemical_classificationLength scaleMultidisciplinaryMaterials scienceCondensed matter physicsCritical phenomenaPolymerAmorphous solidCondensed Matter::Soft Condensed MatterchemistryCritical point (thermodynamics)Mode couplingGlass transitionSupercoolingNature
researchProduct

Dynamical heterogeneities in a supercooled Lennard-Jones liquid

1997

We present the results of a large scale molecular dynamics computer simulation study in which we investigate whether a supercooled Lennard-Jones liquid exhibits dynamical heterogeneities. We evaluate the non-Gaussian parameter for the self part of the van Hove correlation function and use it to identify ``mobile'' particles. We find that these particles form clusters whose size grows with decreasing temperature. We also find that the relaxation time of the mobile particles is significantly shorter than that of the bulk, and that this difference increases with decreasing temperature.

PhysicsCondensed matter physicsMathematical modelGeneral Physics and AstronomyFOS: Physical sciences02 engineering and technologyDisordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Disordered Systems and Neural Networks021001 nanoscience & nanotechnology01 natural sciencesCalculation methodsMolecular dynamicsCorrelation function (statistical mechanics)Lennard-Jones potential0103 physical sciencesParticleDynamical heterogeneity010306 general physics0210 nano-technologySupercooling
researchProduct

Stringlike Cooperative Motion in a Supercooled Liquid

1998

Extensive molecular dynamics simulations are performed on a glass-forming Lennard-Jones mixture to determine the nature of the cooperative motions occurring in this model fragile liquid. We observe stringlike cooperative molecular motion (``strings'') at temperatures well above the glass transition. The mean length of the strings increases upon cooling, and the string length distribution is found to be nearly exponential.

Physics010304 chemical physicsCondensed matter physicsMathematical modelGeneral Physics and AstronomyCondensed Matter::Disordered Systems and Neural Networks01 natural sciences3. Good healthExponential functionCondensed Matter::Soft Condensed MatterMolecular dynamics0103 physical sciencesQuasiparticleRelaxation (physics)Dynamical heterogeneity010306 general physicsGlass transitionSupercoolingPhysical Review Letters
researchProduct

Spatial correlations of mobility and immobility in a glass-forming Lennard-Jones liquid

1998

Using extensive molecular dynamics simulations of an equilibrium, glass-forming Lennard-Jones mixture, we characterize in detail the local atomic motions. We show that spatial correlations exist among particles undergoing extremely large (``mobile'') or extremely small (``immobile'') displacements over a suitably chosen time interval. The immobile particles form the cores of relatively compact clusters, while the mobile particles move cooperatively and form quasi-one-dimensional, stringlike clusters. The strength and length scale of the correlations between mobile particles are found to grow strongly with decreasing temperature, and the mean cluster size appears to diverge near the mode-cou…

Length scalePhysicsNucleationFOS: Physical sciencesCondensed Matter - Soft Condensed Matter01 natural sciences010305 fluids & plasmasMolecular dynamicsRelatively compact subspaceChemical physics0103 physical sciencesSoft Condensed Matter (cond-mat.soft)Relaxation (physics)ParticleDynamical heterogeneityStatistical physics010306 general physicsGlass transitionPhysical Review E
researchProduct