6533b855fe1ef96bd12b1c00

RESEARCH PRODUCT

Generalized Riesz systems and quasi bases in Hilbert space

Fabio BagarelloHiroshi InoueCamillo Trapani

subject

General Mathematicsquasi-basesMathematics::Number TheoryFOS: Physical sciences01 natural sciencesCombinatoricssymbols.namesakeRiesz systemSettore MAT/05 - Analisi MatematicaFOS: Mathematics0101 mathematicsSettore MAT/07 - Fisica MatematicaMathematical PhysicsMathematicsMathematics::Functional AnalysisHigh Energy Physics::Phenomenology010102 general mathematicsHilbert spaceBasis (universal algebra)Mathematical Physics (math-ph)Linear subspaceFunctional Analysis (math.FA)010101 applied mathematicsMathematics - Functional AnalysisBiorthogonal systemsymbols

description

The purpose of this article is twofold. First of all, the notion of $(D, E)$-quasi basis is introduced for a pair $(D, E)$ of dense subspaces of Hilbert spaces. This consists of two biorthogonal sequences $\{ \varphi_n \}$ and $\{ \psi_n \}$ such that $\sum_{n=0}^\infty \ip{x}{\varphi_n}\ip{\psi_n}{y}=\ip{x}{y}$ for all $x \in D$ and $y \in E$. Secondly, it is shown that if biorthogonal sequences $\{ \varphi_n \}$ and $\{ \psi_n \}$ form a $(D ,E)$-quasi basis, then they are generalized Riesz systems. The latter play an interesting role for the construction of non-self-adjoint Hamiltonians and other physically relevant operators.

http://arxiv.org/abs/1907.05604