6533b856fe1ef96bd12b1d05

RESEARCH PRODUCT

Random cutout sets with spatially inhomogeneous intensities

Ville SuomalaTuomo OjalaMeng Wu

subject

General MathematicsStructure (category theory)Hausdorff dimensionDynamical Systems (math.DS)01 natural sciencesMeasure (mathematics)010104 statistics & probabilityCorollaryDimension (vector space)Classical Analysis and ODEs (math.CA)FOS: MathematicsMathematics::Metric Geometry0101 mathematicsMathematics - Dynamical SystemsMathematicsmatematiikkaHausdorffin dimensioProbability (math.PR)010102 general mathematicsMathematical analysisMultifractal systemPoissonian CutoutMetric spaceMathematics - Classical Analysis and ODEsHausdorff dimensionPrimary 60D05 Secondary 28A80 37D35 37C45Intensity (heat transfer)Mathematics - Probability

description

We study the Hausdorff dimension of Poissonian cutout sets defined via inhomogeneous intensity measures on Ahlfors-regular metric spaces. We obtain formulas for the Hausdorff dimension of such cutouts in self-similar and self-conformal spaces using the multifractal decomposition of the average densities for the natural measures.

http://arxiv.org/abs/1504.03447