6533b856fe1ef96bd12b1d83
RESEARCH PRODUCT
Entanglement of superconducting qubits via microwave fields: Classical and quantum regimes
K. ChalapatJian LiGheorghe Sorin Paraoanusubject
PhysicsQuantum PhysicsCondensed Matter - SuperconductivityQuantum sensorFOS: Physical sciencesQuantum PhysicsQuantum entanglementCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsSuperconductivity (cond-mat.supr-con)Computer Science::Emerging TechnologiesControlled NOT gateQuantum mechanicsQuantum electrodynamicsW stateQuantum Physics (quant-ph)Amplitude damping channelSuperconducting quantum computingTrapped ion quantum computerQuantum teleportationdescription
We study analytically and numerically the problem of two qubits with fixed coupling irradiated with quantum or classical fields. In the classical case, we derive an effective Hamiltonian, and construct composite pulse sequences leading to a CNOT gate. In the quantum case, we show that qubit-qubit-photon multiparticle entanglement and maximally entangled two-qubit state can be obtained by driving the system at very low powers (one quanta of excitation). Our results can be applied to a variety of systems of two superconducting qubits coupled to resonators.
year | journal | country | edition | language |
---|---|---|---|---|
2008-03-04 | Physical Review B |